i
Ocean acoustic remote sensing using ambient noise: results from the Florida Straits
-
2016
-
-
Source: Geophysical Journal International, 206(1), 574-589.
Details:
-
Journal Title:Geophysical Journal International
-
Personal Author:
-
NOAA Program & Office:
-
Description:Noise interferometry is the process by which approximations to acoustic Green's functions, which describe sound propagation between two locations, are estimated by cross-correlating time series of ambient noise measured at those locations. Noise-interferometry-based approximations to Green's functions can be used as the basis for a variety of inversion algorithms, thereby providing a purely passive alternative to active-source ocean acoustic remote sensing. In this paper we give an overview of results from noise interferometry experiments conducted in the Florida Straits at 100 m depth in December 2012, and at 600 m depth in September/October 2013. Under good conditions for noise interferometry, estimates of cross-correlation functions are shown to allow one to perform advanced phase-coherent signal processing techniques to perform waveform inversions, estimate currents by exploiting non-reciprocity, perform time-reversal/back-propagation calculations and investigate modal dispersion using time-warping techniques. Conditions which are favourable for noise interferometry are identified and discussed.
-
Source:Geophysical Journal International, 206(1), 574-589.
-
DOI:
-
Document Type:
-
Rights Information:CC BY
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: