| The Role of Springtime Arctic Clouds in Determining Autumn Sea Ice Extent - :14521 | Office of Oceanic and Atmospheric Research (OAR)
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
Help
Clear All Simple Search
Advanced Search
The Role of Springtime Arctic Clouds in Determining Autumn Sea Ice Extent
  • Published Date:
    2016
  • Source:
    Journal of Climate, 29(18), 6581-6596.
Filetype[PDF-2.18 MB]


Details:
  • Description:
    Recent studies suggest that the atmosphere conditions arctic sea ice properties in spring in a way that may be an important factor in predetermining autumn sea ice concentrations. Here, the role of clouds in this system is analyzed using surface-based observations from Barrow, Alaska. Barrow is a coastal location situated adjacent to the region where interannual sea ice variability is largest. Barrow is also along a main transport pathway through which springtime advection of atmospheric energy from lower latitudes to the Arctic Ocean occurs. The cloud contribution is quantified using the observed surface radiative fluxes and cloud radiative forcing (CRF) derived therefrom, which can be positive or negative. In low sea ice years enhanced positive CRF (increased cloud cover enhancing longwave radiative forcing) in April is followed by decreased negative CRF (decreased cloud cover allowing a relative increase in shortwave radiative forcing) in May and June. The opposite is true in high sea ice years. In either case, the combination and timing of these early and late spring cloud radiative processes can serve to enhance the atmospheric preconditioning of sea ice. The net CRF (April and May) measured at Barrow from 1993 through 2014 is negatively correlated with sea ice extent in the following autumn (r(2) = 0.33; p < 0.01). Reanalysis data appear to capture the general timing and sign of the observed CRF anomalies at Barrow and suggest that the anomalies occur over a large region of the central Arctic Ocean, which supports the link between radiative processes observed at Barrow and the broader arctic sea ice extent.

  • Document Type:
You May Also Like: