The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Effects of Biomass Burning on Stratocumulus Droplet Characteristics, Drizzle Rate, and Composition
-
2019
-
-
Source: Journal of Geophysical Research: Atmospheres, 124(22): 12301-12318
Details:
-
Journal Title:Journal of Geophysical Research: Atmospheres
-
Personal Author:
-
NOAA Program & Office:
-
Description:This study reports on airborne measurements of stratocumulus cloud properties under varying degrees of influence from biomass burning (BB) plumes off the California coast. Data are reported from five total airborne campaigns based in Marina, California, with two of them including influence from wildfires in different areas along the coast of the western United States. The results indicate that subcloud cloud condensation nuclei number concentration and mass concentrations of important aerosol species (organics, sulfate, nitrate) were better correlated with cloud droplet number concentration (Nd) as compared to respective above-cloud aerosol data. Given that the majority of BB particles resided above cloud tops, this is an important consideration for future work in the region as the data indicate that the subcloud BB particles likely were entrained from the free troposphere. Lower cloud condensation nuclei activation fractions were observed for BB-impacted clouds as compared to non-BB clouds due, at least partly, to less hygroscopic aerosols. Relationships between Nd and either droplet effective radius or drizzle rate are preserved regardless of BB influence, indicative of how parameterizations can exhibit consistent skill for varying degrees of BB influence as long as Nd is known. Lastly, the composition of both droplet residual particles and cloud water changed significantly when clouds were impacted by BB plumes, with differences observed for different fire sources stemming largely from effects of plume aging time and dust influence.
-
Keywords:
-
Source:Journal of Geophysical Research: Atmospheres, 124(22): 12301-12318
-
DOI:
-
Document Type:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: