Over the next century, the Arctic is projected to become seasonally sea ice‐free. Assessing feedback between clouds and sea ice as the Arctic loses sea ice cover is important because of clouds' radiative impacts on the Arctic surface. Here we investigate present‐day and future Arctic cloud‐sea ice relationships in a fully coupled global climate model forced by business‐as‐usual increases in greenhouse gases. Model evaluation using a lidar simulator and lidar satellite observations shows agreement between present‐day modeled and observed cloud‐sea ice relationships. Summer clouds are unaffected by sea ice variability, but more fall clouds occur over open water than over sea ice. Because the model reproduces observed cloud‐sea ice relationships and their underlying physical mechanisms, the model is used to assess future Arctic cloud‐sea ice feedback. With future sea ice loss, modeled summer cloud fraction, vertical structure, and optical depth barely change. Future sea ice loss does not influence summer clouds, but summer sea ice loss does drive fall cloud changes by increasing the amount of sunlight absorbed by the summertime ocean and the latent and sensible heat released into the atmosphere when the Sun sets in fall. The future fall boundary layer deepens and clouds become more opaque over newly open water. The future nonsummer longwave cloud radiative effect strengthens as nonsummer cloud cover increases. In summary, we find no evidence for a summer cloud‐sea ice feedback but strong evidence for a positive cloud‐sea ice feedback that emerges during nonsummer months as the Arctic warms and sea ice disappears.
Thompson, Elizabeth J.; Moum, James N.; Fairall, Christopher W.; Rutledge, Steven A.;
Published Date:
2019
Source:
Journal of Geophysical Research: Oceans,;
124, 897–924;
Description:
Stratification of the upper few meters of the ocean limits the penetration depth of wind mixing and the vertical distribution of atmospheric fluxes. Significant density stratification at depths ≤ 5 m was observed in 38% of a 2‐month data set from...
We used data from 333 continuous Global Positioning System stations, including 26 stations installed in 2006–2007 as part of a collaborative EarthScope experiment, to investigate how deformation is distributed near the Rio Grande Rift. Our previous...
Observations of shallow fault creep reveal increasingly complex time‐dependent slip histories that include quasi‐steady creep and triggered as well as spontaneous accelerated slip events. Here we report a recent slow slip event on the southern Sa...
Ryu, Y. H.; Hodzic, A.; Descombes, G.; Hu, M.; Barre, J.;
Published Date:
2019
Source:
Journal of Geophysical Research: Atmospheres, 124, 13576-13592
Description:
Accuracy of cloud predictions in numerical weather models can considerably impact ozone (O-3) forecast skill. This study assesses the benefits in surface O-3 predictions of using the Rapid Refresh (RAP) forecasting system that assimilates clouds as w...
Thompson, Anne M.; Smit, Herman G. J.; Witte, Jacquelyn C.; Stauffer, Ryan M.; Johnson, Bryan J.; Morris, Gary; von der Gathen, Peter; Van Malderen, Roeland; Davies, Jonathan; Allaart, Ankie Piters Marc; Posny, Françoise; Kivi, Rigel; Cullis, Patrick; Nguyen, Thi Hoang Anh; Corrales, Ernesto; Machinini, Tshidi; da Silva, Francisco R.; Paiman, George; Thiong’o, Kennedy; Zainal, Zamuna; Brothers, George B.; Wolff, Katherine R.; Nakano, Tatsumi; Stübi, Rene; Romanens, Gonzague; Coetzee, Gert J. R.; Diaz, Jorge A.; Mitro, Sukarni; Mohamad, Maznorizan; Ogino, Shin-Ya;
Published Date:
2019
Source:
Bull. Amer. Meteor. Soc. (2019) 100 (1): 155–171.
Description:
The ozonesonde is a small balloon-borne instrument that is attached to a standard radiosonde to measure profiles of ozone from the surface to 35 km with ∼100-m vertical resolution. Ozonesonde data constitute a mainstay of satellite calibration and ...
White, Allen B.; Moore, Benjamin J.; Gottas, Daniel J.; Neiman, Paul J.;
Published Date:
2019
Source:
Bull. Amer. Meteor. Soc. (2019) 100 (1): 55–70.
Description:
During winter 2016/17, California experienced numerous heavy precipitation events linked to land-falling atmospheric rivers (ARs) that filled reservoirs and ended a severe, multiyear drought. These events also caused floods, mudslides, and debris flo...
Yu, P. F.; Froyd, K. D.; Portmann, R. W.; Toon, O. B.; Freitas, S. R.; Bardeen, C. G.; Brock, C.; Fan, T. Y.; Gao, R. S.; Katich, J. M.; Kupc, A.; Liu, S.; Maloney, C.; Murphy, D. M.; Rosenlof, K. H.; Schill, G.; Schwarz, J. P.; Williamson, C.;
Published Date:
2019
Source:
Geophysical Research Letters, 46, 1061-1069.
Description:
Convective systems dominate the vertical transport of aerosols and trace gases. The most recent in situ aerosol measurements presented here show that the concentrations of primary aerosols including sea salt and black carbon drop by factors of 10 to ...
An intensive coordinated airborne and ground-based measurement study was conducted in the Fayetteville Shale in northwestern Arkansas during September and October 2015 to compare and explain potential discrepancies between top-down and bottom-up esti...
Yang, H.; Waugh, D. W.; Orbe, C.; Patra, P. K.; Jockel, P.; Lamarque, J. F.; Tilmes, S.; Kinnison, D.; Elkins, J. W.; Dlugokencky, E. J.;
Published Date:
2019
Source:
Geophysical Research Letters, 46, 1113-1120.
Description:
Two recent studies using sulfur hexafluoride (SF6) observations to evaluate interhemispheric transport in two different ensembles of atmospheric chemistry models reached different conclusions on model performance. We show here that the different conc...
Reitman, Nadine G.; Mueller, Karl J.; Tucker, Gregory E.; Gold, Ryan D.; Briggs, Richard W.; Barnhart, Katherine R.;
Published Date:
2019
Source:
JGR Solid Earth (2019). 124(12): 13427-13451
Description:
Slip distribution, slip rate, and slip per event for strike‐slip faults are commonly determined by correlating offset stream channels—under the assumption that they record seismic slip—but offset channels are formed by the interplay of tectonic...
Stillwell, Robert A.; Neely III, Ryan R.; Thayer, Jeffrey P.; Walden, Von P.; Shupe, Matthew D.; Miller, Nathaniel B.;
Published Date:
2019
Source:
Journal of Geophysical Research: Atmospheres, 124, 12141-12156
Description:
Ice crystals commonly adopt a horizontal orientation under certain aerodynamic and electrodynamic conditions that occur in the atmosphere. While the radiative impact of horizontally oriented ice crystals (HOIC) has been theoretically studied with res...
The yields of the six declared underground nuclear tests at the North Korean test site are estimated using high‐frequency teleseismic P wave amplitude modeling and waveform equalization of short‐period teleseismic P waves and regional Pn signals....
The cryosphere, which comprises a large portion of Earth’s surface, is rapidly changing as a consequence of global climate change. Ice, snow, and frozen ground in the polar and alpine regions of the planet are known to directly impact atmospheric c...
Mazzotti, Giulia; Currier, William Ryan; Deems, Jeffrey S.; Pflug, Justin M.; Lundquist, Jessica D.; Jonas, Tobias;
Published Date:
2019
Source:
Water Resources Research, 55(7): 6198–6216
Description:
The retrieval of detailed, co‐located snow depth and canopy cover information from airborne lidar has advanced our understanding of links between forest snow distribution and canopy structure. In this study, we present two recent high‐resolution ...
Serreze, Mark C.; Barrett, Andrew P.; Crawford, Alex D.; Woodgate, Rebecca A.;
Published Date:
2019
Source:
Journal of Geophysical Research: Oceans, 124, 9317–9337
Description:
The Bering Strait oceanic heat transport influences seasonal sea ice retreat and advance in the Chukchi Sea. Monitored since 1990, it depends on water temperature and factors controlling the volume transport, assumed to be local winds in the strait a...
The Eastern Cordillera of Colombia, in the northern Andes, is an example of an orogen in which Mesozoic basins were compressed during the Cenozoic, forming a ~2,500‐m‐high plateau in its northern portion. Significant shortening and crustal thicke...
Yarce, J.; Sheehan, A. F.; Nakai, J. S.; Schwartz, S. Y.; Mochizuki, K.; Savage, M. K.; Wallace, L. M.; Henrys, S. A.; Webb, S. C.; Ito, Y.; Abercrombie, R. E.; Fry, B.; Shaddox, H.; Todd, E. K.;
Published Date:
2019
Source:
JGR Solid Earth (2019). 124(5): 4751-5766
Description:
In 2014–2015, the Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip experiment deployed seafloor absolute pressure gauges and ocean bottom seismometers directly above a large slow slip event, allowing examination of the relationship betw...
We propose a time series modeling approach based on nonlinear dynamical systems to recover the underlying dynamics and predictability of streamflow and to produce projections with identifiable skill. First, a wavelet spectral analysis is performed on...
Takahashi, H.; Lebsock, M. D.; Richardson, M.; Marchand, R.; Kay, J. E.;
Published Date:
2019
Source:
Journal of Geophysical Research: Atmospheres, 124, 7270-7285
Description:
Cloud feedbacks remain the largest source of uncertainty in future climate predictions. Simulations robustly project an increase in cloud height, which is supported by some observational evidence. However, how much of this increasing trend is due to ...
Perkins, Jonathan P.; Finnegan, Noah J.; de Silva, Shanaka L.; Willis, Michael J.;
Published Date:
2019
Source:
Geophysical Research Letters, 46, 12012-12020.
Description:
Wind abrasion is important for planetary landscape evolution, and wind‐abraded bedrock landscapes contain many landforms that are difficult to interpret. Here we exploit a natural experiment in Chile where topographic shielding by an upwind lava fl...
While Arctic sea ice is changing, new observation methods are developed and process understanding improves, whereas gaps in observations and understanding evolve. Some previous gaps are filled, while others remain, or come up new. Knowing about the s...
Bliss, AC; Steele, M; Peng, G; Meier, WN; Dickinson, S;
Published Date:
2019
Source:
Environ. Res. Lett. 14 045003
Description:
The seasonal evolution of Arctic sea ice can be described by the timing of key dates of sea ice concentration (SIC) change during its annual retreat and advance cycle. Here, we use SICs from a satellite passive microwave climate data record to identi...