A Process-Based Climatological Evaluation of AIRS Level 3 Tropospheric Thermodynamics over the High-Latitude Arctic
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


A Process-Based Climatological Evaluation of AIRS Level 3 Tropospheric Thermodynamics over the High-Latitude Arctic

Filetype[PDF-4.00 MB]


  • Journal Title:
    Journal of Applied Meteorology and Climatology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Measurements from spaceborne sensors have the unique capacity to fill spatial and temporal gaps in ground-based atmospheric observing systems, especially over the Arctic, where long-term observing stations are limited to pan-Arctic landmasses and infrequent field campaigns. The AIRS level 3 (L3) daily averaged thermodynamic profile product is widely used for process understanding across the sparsely observed Arctic atmosphere. However, detailed investigations into the accuracy of the AIRS L3 thermodynamic profiles product using in situ observations over the high-latitude Arctic are lacking. To address this void, we compiled a wealth of radiosounding profiles from long-term Arctic land stations and included soundings from intensive icebreaker-based field campaigns. These are used to evaluate daily mean thermodynamic profiles from the AIRS L3 product so that the community can understand to what extent such data records can be applied in scientific studies. Results indicate that, while the mid- to upper-troposphere temperature and specific humidity are captured relatively well by AIRS, the lower troposphere is susceptible to specific seasonal, and even monthly, biases. These differences have a critical influence on the lower-tropospheric stability structure. The relatively coarse vertical resolution of the AIRS L3 product, together with infrared radiation through persistent low Arctic cloud layers, leads to artificial thermodynamic structures that fail to accurately represent the lower Arctic atmosphere. These thermodynamic errors are likely to introduce artificial errors in the boundary layer structure and analysis of associated physical processes.
  • Keywords:
  • Source:
    J. Appl. Meteor. Climatol. (2019) 58 (8): 1867–1886
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

Related Documents