The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Mesoscale modulation of air-sea CO2 flux in Drake Passage
-
2016
-
-
Source: Journal of Geophysical Research-Oceans, 121(9), 6635-6649.
Details:
-
Journal Title:Journal of Geophysical Research: Oceans
-
Personal Author:
-
NOAA Program & Office:
-
Description:We investigate the role of mesoscale eddies in modulating air-sea CO2 flux and associated biogeochemical fields in Drake Passage using in situ observations and an eddy-resolving numerical model. Both observations and model show a negative correlation between temperature and partial pressure of CO2 (pCO(2)) anomalies at the sea surface in austral summer, indicating that warm/cold anticyclonic/cyclonic eddies take up more/less CO2. In austral winter, in contrast, relationships are reversed: warm/cold anticyclonic/cyclonic eddies are characterized by a positive/negative pCO(2) anomaly and more/less CO2 outgassing. It is argued that DIC-driven effects on pCO(2) are greater than temperature effects in austral summer, leading to a negative correlation. In austral winter, however, the reverse is true. An eddy-centric analysis of the model solution reveals that nitrate and iron respond differently to the same vertical mixing: vertical mixing has a greater impact on iron because its normalized vertical gradient at the base of the surface mixed layer is an order of magnitude greater than that of nitrate.
-
Source:Journal of Geophysical Research-Oceans, 121(9), 6635-6649.
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: