U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Impact of Current‐Wind Interaction on Vertical Processes in the Southern Ocean

Supporting Files


Select the Download button to view the document
Please click the download button to view the document.

Details

  • Journal Title:
    Journal of Geophysical Research: Oceans
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Momentum input from westerly winds blowing over the Southern Ocean can be modulated by mesoscale surface currents and result in changes in large‐scale ocean circulation. Here, using an eddy‐resolving 1/20 degree ocean model configured near Drake Passage, we evaluate the impact of current‐wind interaction on vertical processes. We find a reduction in momentum input from the wind, reduced eddy kinetic energy, and a modification of Ekman pumping rates. Wind stress curl resulting from current‐wind interaction leads to net upward motion, while the nonlinear Ekman pumping term associated with horizontal gradients of relative vorticity induces net downward motion. The spatially averaged mixed layer depth estimated using a density criteria is shoaled slightly by current‐wind interaction. Current‐wind interaction, on the other hand, enhances the stratification in the thermocline below the mixed layer. Such changes have the potential to alter biogeochemical processes including nutrient supply, biological productivity, and air‐sea carbon dioxide exchange.
  • Source:
    Journal of Geophysical Research: Oceans, 125(4)
  • DOI:
  • ISSN:
    2169-9275 ; 2169-9291
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha-512:36c6dec9d9d9680d396163872b19d12124400e80ffd4063ce9736371debab5a959e514e851894269cac30979c36676d073cc3e96b950e7526384cc2e7e80b96f
  • Download URL:
  • File Type:
    Filetype[PDF - 17.65 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.