O-3, CH4, CO2, CO, NO2 and NMHC aircraft measurements in the Uinta Basin oil and gas region under low and high ozone conditions in winter 2012 and 2013
O-3, CH4, CO2, CO, NO2 and NMHC aircraft measurements in the Uinta Basin oil and gas region under low and high ozone conditions in winter 2012 and 2013
Instrumented aircraft measuring air composition in the Uinta Basin, Utah, during February 2012 and January-February 2013 documented dramatically different atmospheric ozone (O-3) mole fractions. In 2012 O-3 remained near levels of similar to 40 ppb in a well-mixed 500-1000 m deep boundary layer while in 2013, O-3 mole fractions > 140 ppb were measured in a shallow (similar to 200 m) boundary layer. In contrast to 2012 when mole fractions of emissions from oil and gas production such as methane (CH4), non-methane hydrocarbons (NMHCs) and combustion products such as carbon dioxide (CO2) were moderately elevated, in winter 2013 very high mole fractions were observed. Snow cover in 2013 helped produce and maintain strong temperature inversions that capped a shallow cold pool layer. In 2012, O-3 and CH4 and associated NMHCs mole fractions were not closely related. In 2013, O-3 mole fractions were correlated with CH4 and a suite of NMHCs identifying the gas field as the primary source of the O-3 precursor NMHC emissions. In 2013 there was a strong positive correlation between CH4 and CO2 suggesting combustion from oil and natural gas processing activities. The presence of O3 precursor NMHCs through the depth of the boundary layer in 2013 led to O-3 production throughout the layer. In 2013, O-3 mole fractions increased over the course of the week-long episodes indicating O3 photochemical production was larger than dilution and deposition rates, while CH4 mole fractions began to level off after 3 days indicative of some air being mixed out of the boundary layer. The plume of a coal-fired power plant located east of the main gas field was not an important contributor to O-3 or O-3 precursors in the boundary layer in 2013.
Coakley, K. J.; Miller, J. B.; Montzka, S. A.; Sweeney, C.; Miller, B.;
Published Date:
2016
Source:
Journal of Geophysical Research-Atmospheres, 121(12), 7489-7505.
Description:
The measured C-14:C-12 isotopic ratio of atmospheric CO2 (and its associated derived Delta C-14 value) is an ideal tracer for determination of the fossil fuel derived CO2 enhancement contributing to any atmospheric CO2 measurement (C-ff). Given enoug...
LaFranchi, B. W.; McFarlane, K. J.; Miller, J. B.; Lehman, S. J.; Phillips, C. L.; Andrews, A. E.; Tans, P. P.; Chen, H.; Liu, Z.; Turnbull, J. C.; Xu, X.; Guilderson, T. P.;
Published Date:
2016
Source:
Journal of Geophysical Research-Biogeosciences, 121(8), 2275-2295.
Description:
Radiocarbon in CO2 ((CO2)-C-14) measurements can aid in discriminating between fast (< 1 year) and slower (> 5-10 years) cycling of C between the atmosphere and the terrestrial biosphere due to the 14C disequilibrium between atmospheric and terrestri...
Miller, S. M.; Miller, C. E.; Commane, R.; Chang, R. Y. W.; Dinardo, S. J.; Henderson, J. M.; Karion, A.; Lindaas, J.; Melton, J. R.; Miller, J. B.; Sweeney, C.; Wofsy, S. C.; Michalak, A. M.;
Published Date:
2016
Source:
Global Biogeochemical Cycles, 30(10), 1441-1453.
Description:
Methane (CH4) fluxes from Alaska and other arctic regions may be sensitive to thawing permafrost and future climate change, but estimates of both current and future fluxes from the region are uncertain. This study estimates CH4 fluxes across Alaska f...
Song, H.; Marshall, J.; Munro, D. R.; Dutkiewicz, S.; Sweeney, C.; McGillicuddy, D. J.; Hausmann, U.;
Published Date:
2016
Source:
Journal of Geophysical Research-Oceans, 121(9), 6635-6649.
Description:
We investigate the role of mesoscale eddies in modulating air-sea CO2 flux and associated biogeochemical fields in Drake Passage using in situ observations and an eddy-resolving numerical model. Both observations and model show a negative correlation...
Carbonyl sulfide (COS) has been suggested as a useful tracer for gross primary production as it is taken up by plants in a similar way as CO2. To explore and verify the application of this novel tracer, it is highly desired to develop the ability to ...
The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) aboard the Envisat satellite provided measurements from August 2002 until April 2012. SCIAMACHY measured the scattered or direct sunlight using different observatio...
McDuffie, E. E.; Edwards, P. M.; Gilman, J. B.; Lerner, B. M.; Dube, W. P.; Trainer, M.; Wolfe, D. E.; Angevine, W. M.; deGouw, J.; Williams, E. J.; Tevlin, A. G.; Murphy, J. G.; Fischer, E. V.; McKeen, S.; Ryerson, T. B.; Peischl, J.; Holloway, J. S.; Aikin, K.; Langford, A. O.; Senff, C. J.; Alvarez, R. J.; Hall, S. R.; Ullmann, K.; Lantz, K. O.; Brown, S. S.;
Published Date:
2016
Source:
Journal of Geophysical Research-Atmospheres, 121(14), 8712-8729.
Description:
Tropospheric O-3 has been decreasing across much of the eastern U.S. but has remained steady or even increased in some western regions. Recent increases in VOC and NOx emissions associated with the production of oil and natural gas (O&NG) may contrib...
Van Dam, B.; Helmig, D.; Doskey, P. V.; Oltmans, S. J.;
Published Date:
2016
Source:
Journal of Geophysical Research-Atmospheres, 121(13), 8055-8066.
Description:
Atmospheric turbulence quantities, boundary layer ozone (O-3) levels, and O-3 deposition to the tundra surface were investigated at Toolik Lake, AK, during the 2011 summer season. Beginning immediately after snowmelt, a diurnal cycle of O-3 in the at...
Butler, J. H.; Yvon-Lewis, S. A.; Lobert, J. M.; King, D. B.; Montzka, S. A.; Bullister, J. L.; Koropalov, V.; Elkins, J. W.; Hall, B. D.; Hu, L.; Liu, Y. N.;
Published Date:
2016
Source:
Atmospheric Chemistry and Physics, 16(17), 10899-10910.
Description:
Extensive undersaturations of carbon tetrachloride (CCl4) in Pacific, Atlantic, and Southern Ocean surface waters indicate that atmospheric CCl4 is consumed in large amounts by the ocean. Observations made on 16 research cruises between 1987 and 2010...
Profiles of CFC-11 (CCl3F) and CFC-12 (CCl2F2) of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the European satellite Envisat have been retrieved from versions MIPAS/4.61 to MI-PAS/4.62 and MIPAS/5.02 to MIPAS/5.06 lev...
Balloon-borne frost point hygrometers (FPs) and the Aura Microwave Limb Sounder (MLS) provide high-quality vertical profile measurements of water vapor in the upper troposphere and lower stratosphere (UTLS). A previous comparison of stratospheric wat...
Wiggins, E. B.; Veraverbeke, S.; Henderson, J. M.; Karion, A.; Miller, J. B.; Lindaas, J.; Commane, R.; Sweeney, C.; Luus, K. A.; Tosca, M. G.; Dinardo, S. J.; Wofsy, S.; Miller, C. E.; Randerson, J. T.;
Published Date:
2016
Source:
Journal of Geophysical Research-Biogeosciences, 121(11), 2793-2810.
Description:
Relationships between boreal wildfire emissions and day-to-day variations in meteorological variables are complex and have important implications for the sensitivity of high-latitude ecosystems to climate change. We examined the influence of environm...
Atmospheric Chemistry and Physics, 16(9), 5665-5683.
Description:
National annual total CO2 emissions from combustion of fossil fuels are likely known to within 5-10aEuro-% for most developed countries. However, uncertainties are inevitably larger (by unknown amounts) for emission estimates at regional and monthly ...
Karion, A.; Sweeney, C.; Miller, J. B.; Andrews, A. E.; Commane, R.; Dinardo, S.; Henderson, J. M.; Lindaas, J.; Lin, J. C.; Luus, K. A.; Newberger, T.; Tans, P.; Wofsy, S. C.; Wolter, S.; Miller, C. E.;
Published Date:
2016
Source:
Atmospheric Chemistry and Physics, 16(8), 5383-5398.
Description:
Northern high-latitude carbon sources and sinks, including those resulting from degrading permafrost, are thought to be sensitive to the rapidly warming climate. Because the near-surface atmosphere integrates surface fluxes over large ( aEuro-500-100...
Alden, C. B.; Miller, J. B.; Gatti, L. V.; Gloor, M. M.; Guan, K.; Michalak, A. M.; van der Laan-Luijkx, I. T.; Touma, D.; Andrews, A.; Basso, L. S.; Correia, C. S. C.; Domingues, L. G.; Joiner, J.; Krol, M. C.; Lyapustin, A. I.; Peters, W.; Shiga, Y. P.; Thoning, K.; van der Velde, I. R.; van Leeuwen, T. T.; Yadav, V.; Diffenbaugh, N. S.;
Published Date:
2016
Source:
Global Change Biology, 22(10), 3427-3443.
Description:
Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the globa...
Frankenberg, C.; Thorpe, A. K.; Thompson, D. R.; Hulley, G.; Kort, E. A.; Vance, N.; Borchardt, J.; Krings, T.; Gerilowski, K.; Sweeney, C.; Conley, S.; Bue, B. D.; Aubrey, A. D.; Hook, S.; Green, R. O.;
Published Date:
2016
Source:
Proceedings of the National Academy of Sciences of the United States of America, 113(35), 9734-9739.
Description:
Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of...
Feingold, G.; McComiskey, A.; Yamaguchi, T.; Johnson, J. S.; Carslaw, K. S.; Schmidt, K. S.;
Published Date:
2016
Source:
Proceedings of the National Academy of Sciences of the United States of America, 113(21), 5812-5819.
Description:
The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical propertie...
Sweeney, C.; Dlugokencky, E.; Miller, C. E.; Wofsy, S.; Karion, A.; Dinardo, S.; Chang, R. Y. W.; Miller, J. B.; Bruhwiler, L.; Crotwell, A. M.; Newberger, T.; McKain, K.; Stone, R. S.; Wolter, S. E.; Lang, P. E.; Tans, P.;
Published Date:
2016
Source:
Geophysical Research Letters, 43(12), 6604-6611.
Description:
Continuous measurements of atmospheric methane (CH4) mole fractions measured by NOAA's Global Greenhouse Gas Reference Network in Barrow, AK (BRW), show strong enhancements above background values when winds come from the land sector from July to Dec...