A model-based examination of multivariate physical modes in the Gulf of Alaska
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

A model-based examination of multivariate physical modes in the Gulf of Alaska

Filetype[PDF-13.27 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Deep-Sea Research Part II-Topical Studies in Oceanography
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    We use multivariate output from a hydrodynamic model of the Gulf of Alaska (GOA) to explore the covariance among its physical state and air/sea fluxes. We attempt to summarize this coupled variability using a limited set of patterns, and examine their correlation to three large-scale climate indices relevant to the Northeast Pacific. This analysis is focused on perturbations from monthly climatology of the following attributes of the GOA: sea surface temperature, sea surface height, mixed layer depth, sea surface salinity, latent heat flux, sensible heat flux, shortwave irradiance, net long wave irradiance, currents at 40 m depth, and wind stress. We identified two multivariate modes, both substantially correlated with the Pacific Decadal Oscillation (PDO) and Multivariate El Nino (MEI) indices on interannual timescales, which together account for similar to 30% of the total normalized variance of the perturbation time series. These two modes indicate the following covarying events during periods of positive PDO/MEI: (1) anomalously warm, wet and windy conditions (typically in winter), with elevated coastal SSH, followed 2-5 months later by (2) reduced cloud cover, with emerging shelf-break eddies. Similar modes are found when the analysis is performed separately on the eastern and western GOA; in general, modal amplitudes appear stronger in the western GOA. (C) 2016 Elsevier Ltd All rights reserved.
  • Source:
    Deep-Sea Research Part Ii-Topical Studies in Oceanography, 132, 68-89.
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Rights Statement:
    The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

Related Documents

You May Also Like

Checkout today's featured content at

Version 3.27.2