U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Mapping Coral Reef Habitats with ICESat-2 and Satellite Imagery: A Novel Spectral Unmixing Approach Compared to Machine Learning



Select the Download button to view the document
Please click the download button to view the document.

Details

  • Journal Title:
    Remote Sensing
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Accurate, scalable mapping of coral reef habitats is essential for monitoring ecosystem health and detecting change over time. In this study, we introduce a novel mathematically based nonlinear spectral unmixing method for benthic habitat classification, which provides sub-pixel estimates of benthic composition, capturing the mixed benthic composition within individual pixels. We compare its performance against two machine learning approaches: semi-supervised K-Means clustering and AdaBoost decision trees. All models were applied to high-resolution PlanetScope satellite imagery and ICESat-2-derived terrain metrics. Models were trained using a ground truth dataset constructed from benthic photoquadrats collected at Heron Reef, Australia, with additional input features including band ratios, standardized band differences, and derived ICESat-2 metrics such as rugosity and slope. While AdaBoost achieved the highest overall accuracy (93.3%) and benefited most from ICESat-2 features, K-Means performed less well (85.9%) and declined when these metrics were included. The spectral unmixing method uniquely captured sub-pixel habitat abundance, offering a more nuanced and ecologically realistic view of reef composition despite lower discrete classification accuracy (64.8%). These findings highlight nonlinear spectral unmixing as a promising approach for fine-scale, transferable coral reef habitat mapping, especially in complex or heterogeneous reef environments.
  • Source:
    Remote Sensing, 17(21), 3623
  • DOI:
  • ISSN:
    2072-4292
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha-512:89f51bc0f1f6e8956d8586cfca3aeeddb80b99b9a1048642f4a8fd0f9e89a9af30c49e13515d6ba300e5d7ba57c30a116e24750e7f2b58d9ee8f365c388fea84
  • Download URL:
  • File Type:
    Filetype[PDF - 27.16 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.