The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Impact of the Antarctic bottom water formation on the Weddell Gyre and its northward propagation characteristics in GFDL model
-
2016
-
Source: J. Geophys. Res. Oceans, 121, 5825– 5846
Details:
-
Journal Title:Journal of Geophysical Research: Oceans
-
Personal Author:
-
NOAA Program & Office:
-
Description:The impact of Antarctic bottom water (AABW) formation on the Weddell Gyre and its northward propagation characteristics are studied using a 4000 year long control run of the GFDL CM2.1 model as well as sensitivity experiments. In the control run, the AABW cell and Weddell Gyre are highly correlated when the AABW cell leads the Weddell Gyre by several years, with an enhanced AABW cell corresponding to a strengthened Weddell Gyre and vice versa. An additional sensitivity experiment shows that the response of the Weddell Gyre to AABW cell changes is primarily attributed to interactions between the AABW outflow and ocean topography, instead of the surface wind stress curl and freshwater anomalies. As the AABW flows northward, it encounters topography with steep slopes that induce strong downwelling and negative bottom vortex stretching. The anomalous negative bottom vortex stretching induces a cyclonic barotropic stream function over the Weddell Sea, thus leading to an enhanced Weddell Gyre. The AABW cell variations in the control run have significant meridional coherence in density space. Using passive dye tracers, it is found that the slow propagation of AABW cell anomalies south of 35°S corresponds to the slow tracer advection time scale. The dye tracers escape the Weddell Sea through the western limb of the Weddell Gyre and then go northwestward to the Argentine Basin through South Sandwich Trench and Georgia Basin. This slow advection by deep ocean currents determines the AABW cell propagation speed south of 35°S. North of 35°S the propagation speed is determined both by advection in the deep western boundary current and through Kelvin waves.
-
Keywords:
-
Source:J. Geophys. Res. Oceans, 121, 5825– 5846
-
DOI:
-
Document Type:
-
Place as Subject:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: