Details:
-
Alternative Title:Surface Air Temperature
-
Personal Author:
-
Corporate Authors:
-
NOAA Program & Office:
-
Description:Surface air temperatures (SAT) represent one of the strongest indicators of Arctic change over the last 50 years (Box et al. 2019). While SAT patterns across the Arctic vary on a seasonal and annual basis, there has been a strong, positive trend toward warming pan-Arctic land SAT over the last five decades (Fig. 1). This warming has distinctly impacted the Arctic cryosphere, most notably through the decline of sea-ice extent across the annual cycle (Stroeve and Notz 2018; see essay Sea Ice), decreased mass balance of ice sheets and glaciers (Hanna et al. 2020; see essay Greenland Ice Sheet), and increased permafrost temperatures (Biskaborn et al. 2019). Ecosystems in the region are also highly sensitive to SAT trends and extreme temperature events. For example, increased trends in terrestrial vegetation productivity and "greening" of the Arctic tundra are largely attributed to the strong influence of multidecadal SAT warming (Myers-Smith et al. 2020; see essay Tundra Greenness). These warming-induced Arctic system changes have been especially pronounced during the last 15 years, spanning the history of the Arctic Report Card. In this essay, we summarize the seasonal and annual Arctic SAT conditions over the last year (October 2019-September 2020), relative to recent decades.
-
Keywords:
-
Series:
-
DOI:
-
Document Type:
-
Place as Subject:
-
Rights Information:Public Domain
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: