Climate Change and Watershed Hydrology - Heavier Precipitation Influence on Stormwater Runoff
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Climate Change and Watershed Hydrology - Heavier Precipitation Influence on Stormwater Runoff

Filetype[PDF-1.26 MB]



Details:

  • Journal Title:
    Geosciences
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Stormwater runoff in the USA is a main driver of non-point source pollution and other major problems for urbanizing areas, and runoff effects will be exacerbated by the increased frequency and intensity of heavier storm events that are projected as climate changes. The purpose of this paper is to consider how increased rainfall from storms could influence direct stormwater runoff in urbanizing watersheds. As part of a recent research project in coastal Beaufort County, South Carolina, USA, we applied the Stormwater Runoff Modeling System (SWARM) to model various combinations of development levels and climate change scenarios. SWARM single-event output showed dramatic increases in runoff volume and rate, in some cases almost doubling under moderate climate change scenario and tripling under severe climate change scenario. In all cases, modeled impacts from climate change exceeded those of development. By quantifying stormwater runoff based on climate change scenarios within the context of development, the findings add to the recognition that they must be considered together when projecting changes in watershed hydrology and that climate change effects potentially exceed those of development.
  • Keywords:
  • Source:
    Geosciences, 6(3), 34.
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

Related Documents

You May Also Like

Checkout today's featured content at

Version 3.27.1