Deriving Bathymetry from Multispectral Remote Sensing Data
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Deriving Bathymetry from Multispectral Remote Sensing Data

Filetype[PDF-6.98 MB]

Select the Download button to view the document
This document is over 5mb in size and cannot be previewed


  • Journal Title:
    Journal of Marine Science and Engineering
  • Description:
    The use of passive satellite sensor data in shallow waters is complicated by the combined atmospheric, water, and bottom signals. Accurate determination of water depth is important for monitoring underwater topography and detection of moved sediments and in support of navigation. A Worldview 2 (WV2) image was used to develop high-resolution bathymetric maps (four meters) that were validated using bathymetry from an active sensor Light Detection and Ranging (LiDAR). The influence of atmospheric corrections in depth retrievals was evaluated using the Dark Substract, Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and the Cloud Shadow Approach (CSA) atmospheric corrections. The CSA combined with a simple band ratio (Band2/Band3) provided the best performance, where it explained 82% of model values. The WV2 depth model was validated at another site within the image, where it successfully retrieved depth values with a coefficient of determination (r2) of 0.90 for all the depth values sampled, and an r2 of 0.70, for a depth range to 20 m. The WV2 bands in the visible region were useful for testing different band combinations to derive bathymetry that, when combined with a robust atmospheric correction, provided depth retrievals even in areas with variable bottom composition and near the limits of detection.
  • Keywords:
  • Source:
    J. Mar. Sci. Eng. 2016, 4(1), 8
  • Document Type:
  • Place as Subject:
  • Rights Information:
    CC BY
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

Related Documents

You May Also Like