| Wind-driven ocean dynamics impact on the contrasting sea-ice trends around West Antarctica - :18004 | Office of Oceanic and Atmospheric Research (OAR)
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
Help
Clear All Simple Search
Advanced Search
Wind-driven ocean dynamics impact on the contrasting sea-ice trends around West Antarctica
Filetype[PDF-5.61 MB]


This document cannot be previewed automatically as it exceeds 5 MB
Please click the thumbnail image to view the document.
Wind-driven ocean dynamics impact on the contrasting sea-ice trends around West Antarctica
Details:
  • Description:
    Since late 1978, Antarctic sea-ice extent in the East Pacific has retreated persistently over the Amundsen and Bellingshausen Seas in warm seasons, but expanded over the Ross and Amundsen Seas in cold seasons, while almost opposite seasonal trends have occurred in the Atlantic over the Weddell Sea. By using a surface-forced ocean and sea-ice coupled model, we show that regional wind-driven ocean dynamics played a key role in driving these trends. In the East Pacific, the strengthening Southern Hemisphere (SH) westerlies in the region enhanced the Ekman upwelling of warm upper Circumpolar Deep Water and increased the northward Ekman transport of cold Antarctic surface water. The associated surface ocean warming south of 68 degrees S and the cooling north of 68 degrees S directly contributed to the retreat of sea-ice in warm seasons and the expansion in cold seasons, respectively. In the Atlantic, the poleward shifting SH westerlies in the region strengthened the northern branch of the Weddell Gyre, which in turn increased the meridional thermal gradient across it as constrained by the thermal wind balance. Ocean heat budget analysis further suggests that the strengthened northern branch of the Weddell Gyre acted as a barrier against the poleward ocean heat transport, and thus produced anomalous heat divergence within the Weddell Gyre and anomalous heat convergence north of the gyre. The associated cooling within the Weddell Gyre and the warming north of the gyre contributed to the expansion of sea-ice in warm seasons and the retreat in cold seasons, respectively.

  • Document Type:
  • Supporting Files:
    No Additional Files