Coral reef detection using ICESat-2 and machine learning
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Coral reef detection using ICESat-2 and machine learning

Filetype[PDF-5.35 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Ecological Informatics
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    As anthropogenic impacts threaten natural habitats, effective monitoring strategies are crucial. Coral reefs, among the most vulnerable ecosystems, traditionally employ monitoring techniques that are labor-intensive and costly, prompting the exploration of remote sensing as a cost-effective alternative. Launched in October 2018, the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) provides high-resolution, high-frequency data, with its green laser offering unprecedented opportunities for bathymetric and coral reef applications. This study investigates the use of ICESat-2 data for atoll coral reef detection, utilizing Heron Island in the Great Barrier Reef, AU, and employing machine learning models. A binary logistic regression (BLR) model and convolutional neural network (CNN) were tested for determining coral reef presence, with the CNN outperforming the BLR in accuracy (85.4%), F1 score (43%), and false positive rate (13.1%). A challenge of the study included the difficulty of balancing false positive rates in predictive models to avoid over- or underestimations of reef extent. These obstacles were mitigated through the integration of algorithmically derived pseudo-rugosity and slope metrics as innovative proxies for seafloor complexity, significantly improving predictive performance. Feature importance analysis identified satellite-derived bathymetry (SDB) depth as the most critical predictor of coral presence, followed by pseudo-rugosity, slope, and various other depth measurements. This research establishes a new application of ICESat-2 data combined with advanced machine learning techniques as a promising method for efficient and cost-effective coral reef monitoring. Future work should refine algorithms and incorporate additional environmental variables to improve model performance across various reef types.
  • Keywords:
  • Source:
    Ecological Informatics 87 (2025) 103099
  • DOI:
  • Format:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.27.2