U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Coral reef detection using ICESat-2 and machine learning



Details

  • Journal Title:
    Ecological Informatics
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    As anthropogenic impacts threaten natural habitats, effective monitoring strategies are crucial. Coral reefs, among the most vulnerable ecosystems, traditionally employ monitoring techniques that are labor-intensive and costly, prompting the exploration of remote sensing as a cost-effective alternative. Launched in October 2018, the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) provides high-resolution, high-frequency data, with its green laser offering unprecedented opportunities for bathymetric and coral reef applications. This study investigates the use of ICESat-2 data for atoll coral reef detection, utilizing Heron Island in the Great Barrier Reef, AU, and employing machine learning models. A binary logistic regression (BLR) model and convolutional neural network (CNN) were tested for determining coral reef presence, with the CNN outperforming the BLR in accuracy (85.4%), F1 score (43%), and false positive rate (13.1%). A challenge of the study included the difficulty of balancing false positive rates in predictive models to avoid over- or underestimations of reef extent. These obstacles were mitigated through the integration of algorithmically derived pseudo-rugosity and slope metrics as innovative proxies for seafloor complexity, significantly improving predictive performance. Feature importance analysis identified satellite-derived bathymetry (SDB) depth as the most critical predictor of coral presence, followed by pseudo-rugosity, slope, and various other depth measurements. This research establishes a new application of ICESat-2 data combined with advanced machine learning techniques as a promising method for efficient and cost-effective coral reef monitoring. Future work should refine algorithms and incorporate additional environmental variables to improve model performance across various reef types.
  • Keywords:
  • Source:
    Ecological Informatics 87 (2025) 103099
  • DOI:
  • Format:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha-512:eb7c1bcaa0f7d71ee8550dd365dd5765d6ff394ed5831876c27467ec3c37e7d27c57451664eceea75f283e400d9c577cfd102e577e933bac7dbbf8c93f965f48
  • Download URL:
  • File Type:
    Filetype[PDF - 5.35 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.