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 A B S T R A C T

As anthropogenic impacts threaten natural habitats, effective monitoring strategies are crucial. Coral reefs, 
among the most vulnerable ecosystems, traditionally employ monitoring techniques that are labor-intensive 
and costly, prompting the exploration of remote sensing as a cost-effective alternative. Launched in October 
2018, the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) provides high-resolution, high-frequency data, 
with its green laser offering unprecedented opportunities for bathymetric and coral reef applications. This study 
investigates the use of ICESat-2 data for atoll coral reef detection, utilizing Heron Island in the Great Barrier 
Reef, AU, and employing machine learning models. A binary logistic regression (BLR) model and convolutional 
neural network (CNN) were tested for determining coral reef presence, with the CNN outperforming the BLR 
in accuracy (85.4%), F1 score (43%), and false positive rate (13.1%). A challenge of the study included the 
difficulty of balancing false positive rates in predictive models to avoid over- or underestimations of reef 
extent. These obstacles were mitigated through the integration of algorithmically derived pseudo-rugosity and 
slope metrics as innovative proxies for seafloor complexity, significantly improving predictive performance. 
Feature importance analysis identified satellite-derived bathymetry (SDB) depth as the most critical predictor 
of coral presence, followed by pseudo-rugosity, slope, and various other depth measurements. This research 
establishes a new application of ICESat-2 data combined with advanced machine learning techniques as a 
promising method for efficient and cost-effective coral reef monitoring. Future work should refine algorithms 
and incorporate additional environmental variables to improve model performance across various reef types.
1. Introduction

As anthropogenic impacts increasingly threaten natural and human 
habitats, it becomes imperative that relevant research is maintained 
to lessen these threats. Among the ecosystems susceptible to these 
changes, coral reefs and their associated benthic habitats stand out 
as particularly vulnerable. Current coral reef monitoring techniques, 
such as manta tow surveys and fixed site surveys using photography 
and visual counts, require significant human effort to collect in situ
data (Australian Institute of Marine Science, 2023). Furthermore, these 
methods are restricted to small spatial extents, typically on the or-
der of meters. These limitations highlight the need for scalable and 
cost-effective alternatives.

Remote sensing technologies provide a promising alternative so-
lution for monitoring coral reefs across large spatial extents that is 
reliable, cost-effective, and economical. In geomorphic and habitat 
mapping, the literature identifies satellite imagery, such as multispec-
tral imagery (Caras et al., 2017; Gazi et al., 2020; Li et al., 2020; 
Munawaroh et al., 2021), hyperspectral imagery (Mishra et al., 2007; 

∗ Corresponding author at: Center for Coastal and Ocean Mapping/UNH-NOAA Joint Hydrographic Center, University of New Hampshire, Durham, NH 03824, 
USA.

E-mail address: gabrielle.trudeau@unh.edu (G.A. Trudeau).

Diaz et al., 2024), or a combination of both (Bajjouk et al., 2019) 
as the primary remote sensing datasets. Traditional light detection 
and ranging (LiDAR) instrumentation has also demonstrated excep-
tional capability in producing highly accurate and detailed coral reef 
maps (Harris et al., 2023; Amani et al., 2022). Satellite imagery of-
fers large-scale coverage of the world, typically with frequent data 
acquisition, making it an effective data source for monitoring reef 
extent. However, satellite imagery is inherently limited by its inability 
to penetrate water and capture underwater features, a critical capa-
bility for detailed coral reef and bathymetric mapping. On the other 
hand, LiDAR data offers highly accurate, higher-resolution bathymetric 
data, making them ideal for assessing seafloor complexity. However, 
LiDAR systems are expensive, logistically challenging, and typically 
used for regional-scale mapping rather than broad, large-scale reef 
monitoring. Space-based LiDAR platforms such as the Ice, Cloud, and 
Land Elevation Satellite-2 (ICESat-2) represent an emerging alternative 
that combines the strengths of these two approaches. ICESat-2 provides 
wide-scale coverage similar to satellite imaging, while also delivering 
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bathymetric accuracy akin to LiDAR data, offering a balanced com-
promise between detail and accessibility. This unique capability makes 
ICESat-2 an advantageous tool for coral reef monitoring, enabling large-
scale assessments with sufficient resolution to capture ecologically 
significant features.

ICESat-2 was launched in October 2018 to collect elevation mea-
surements of the Earth. It follows as the second generation of the 
original laser altimeter, ICESat, that was in service from 2003 to 2009. 
While initially intended for collecting data regarding changes in the 
cryosphere, the green laser aboard ICESat-2 opens the door to an 
abundance of oceanic and bathymetric applications (National Snow and 
Ice Data Center, 2024). Initial studies have validated ICESat-2’s capa-
bility for extracting bathymetry (Parrish et al., 2019; Ma et al., 2020; 
Ranndal et al., 2021). However, as a space-based LiDAR system, ICESat-
2 faces challenges such as underwater light scattering and noisy photon 
signals, which can affect the quality and accuracy of its data for marine 
applications (Zhang et al., 2024; Xie et al., 2024; Song et al., 2024; 
Wen et al., 2024). Recent studies have introduced various filtering 
techniques (sometimes referred to as ‘‘denoising’’ or ‘‘decomposing’’) 
(Zhu et al., 2024; Yin et al., 2024; Wang et al., 2023) to address these 
challenges and improve the reliability of ICESat-2 data. Despite these 
challenges, extracting bathymetry using a single dataset such as ICESat-
2 offers significant advantages, including simplicity, consistency, and 
reproducibility. It also streamlines workflows, such as our own, that 
rely on bathymetric data.

Many studies that evaluate ICESat-2’s bathymetric performance in 
combination with other datasets, such as multispectral satellite imagery 
from Sentinel-2 (Babbel et al., 2021; Xu et al., 2021; Hsu et al., 
2021; Gleason et al., 2021; Zhang et al., 2022), conclude that ICESat-2 
alone does not provide a strong monitoring capability. Other notable 
approaches use deep learning with ICESat-2 and multispectral data 
for coral reef classification (Ai et al., 2024) and geomorphic zone 
mapping (Zhong et al., 2024). While combining datasets can enhance 
results, it also increases computational and analytical complexity and 
may introduce additional noise or errors, potentially impacting the 
reliability of the model and its outcomes.

Recent advancements in machine learning have seen a wide vari-
ety of models developed for predictive purposes (Abu-Hashem et al., 
2024). Models such as the LSTM-INFO (Adnan et al., 2023) and RVM-
DMOA (Adnan et al., 2024) have shown effectiveness in tasks such 
as time series modeling. These models often incorporate hybrid or 
ensemble approaches to enhance predictive accuracy and handle the 
temporal variations inherent in time series data. However, the task 
of coral reef detection presents unique challenges that differ from 
traditional time series applications. Although hybrid models can offer 
increased flexibility and predictive power, they often introduce addi-
tional complexity in model training and implementation, which may 
not be necessary for this application. We have opted to use models that 
efficiently capture spatial features while maintaining a straightforward 
architecture. This study achieves a balance between model performance 
and interpretability, ensuring that the methodology remains accessible 
while addressing the core challenges of the task.

To extend the utility of ICESat-2 data alone, numerical parameters 
such as slope and rugosity extracted from ICESat-2 are explored in 
this study. While these parameters have been explored in geomor-
phic studies, their application in comprehensive coral detection from 
LiDAR remains underutilized. Though studies on coral reef mapping 
naturally focus on sites with corals, there is a gap in the literature 
explicitly addressing the comprehensive detection of coral presence. 
This study addresses this gap by leveraging ICESat-2 data with machine 
learning techniques to detect coral reefs near Heron Island in the 
Great Barrier Reef, Australia. Using a binary logistic regression (BLR) 
model and convolutional neural network (CNN), this research evaluates 
the potential of ICESat-2 to be a cost-effective solution to coral reef 
detection and other related research. The results provide foundational 
insights into the utility of ICESat-2 data for marine applications and 
demonstrate its value as a reliable, high-resolution, and temporally 
frequent data source for monitoring coral reefs. By advancing remote 
sensing methodologies, this work contributes to the efficient processing 
2 
and application of ICESat-2 data, with implications for both coral reef 
research and broader environmental monitoring efforts.

2. Materials and methods

2.1. Study area

Our study site is the coral cay of Heron Island (23◦ 27′ S., 151 ◦ 57′
E.) and a neighboring reef, Wistari Reef (23◦ 28′ S., 151◦ 53′ E.), located 
at the southern tip of the Great Barrier Reef in Australia (Fig.  1). These 
reefs are lagoonal reefs, also known as atolls, which are characterized 
by well-defined reef flats that slope downward along their perimeters 
and lagoons filled with coral patches. This unique and straightforward 
reef structure minimizes environmental complexity, making the site an 
ideal test bed for developing and validating a coral reef monitoring 
methodology. Additionally, these reefs, which are home to 72% of 
all coral species on the Great Barrier Reef, exhibit exceptionally high 
biodiversity. By selecting this site, we establish a strong foundation for 
testing and validating our approach under ideal conditions, maximizing 
the potential for accurate, reliable, and scalable monitoring of coral 
reefs. This proof of concept underscores the feasibility and effectiveness 
of our methodology, paving the way for its application in more complex 
and diverse reef environments.

2.2. ICESat-2 data

ICESat-2, containing the Advanced Topographic Laser Altimeter 
System (ATLAS) photon-counting instrument, utilizes a green laser 
(532 nm) to collect Earth elevation data. At each overpass, this laser 
surveys with three pairs of beams spaced 3.3 km apart, where each 
pair contains a strong and a weak beam spaced 90 m apart, resulting 
in six beams in total. The strong and weak beams differ in transmit 
energies with an approximate ratio of 4:1. With a footprint width of 
approximately 6.6 km across track, ICESat-2 releases 10,000 pulses per 
second, ideally providing a ground-based measurement every 70 cm on 
the strong tracks and 280 cm on the weak tracks (National Snow and 
Ice Data Center, 2024).

As a non-traditional dataset, ICESat-2 presents unique challenges. 
Unlike conventional LiDAR systems, its photon-counting approach gen-
erates high levels of noise, requiring significant filtering to distinguish 
true seafloor returns from noise photons. Additionally, the narrow 
footprint and widely spaced tracks limit its spatial coverage, preventing 
ICESat-2 from achieving global coverage. To mitigate these limitations 
and strengthen the signal in our study, the strong and weak tracks 
within each beam pair were combined.

The spatial coverage of the study area, shown in Fig.  2, is approx-
imately 20 km 𝑥 11 km in area, with temporal coverage from 2019 to 
2022. Twenty-three distinct ICESat-2 tracks from eight different dates 
in total were used in the study. The processing steps undertaken to 
extract bathymetry from ICESat-2 tracks are further discussed, with an 
example of a processed track shown in Fig.  4.

This study uses ICESat-2’s data product ATL03, Global Geolocated 
Photons (Neumann et al., 2023), which were retrieved from the Na-
tional Snow and Ice Data Center (NSIDC). The NSIDC provides a user’s 
guide, algorithm theoretical basis document, and data dictionary for 
ATL03 (Neumann et al., 2023). ATL03 uses lower-level products to 
geolocate returned photon events in 𝑋, 𝑌 , and 𝑍 directions and to 
classify their heights. These classifications include a photon quality 
flag and a photon signal confidence flag. The quality flag (quality 
ph) classifies data as nominal, possible after-pulse, possible impulse 
response, or possible transmitter echo pulse (TEP). The photon signal 
confidence flag (signal conf ph) classifies each photon based on the 
likelihood that it is a true signal (not noise) for different surface types 
(i.e., land, ocean, sea ice, land ice, and inland water). Each photon 
is assigned a confidence value indicating noise (0), background (1), 
low confidence (2), medium confidence (3), or high confidence (4) for 
each surface type (Neumann et al., 2023). While this flag helps reduce 
data volumes for higher-level ICESat-2 products, it also serves as a 
signal-confidence rating that we leveraged for noise filtering.
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Fig. 1. Satellite image of Heron Island, AU and the surrounding reefs: Wistari and Heron Reef. Map lines delineate study area and do not necessarily depict accepted national 
boundaries.
Fig. 2. All usable ICESat-2 tracks located within the study area. Each track is labeled with the date (year–month–day) the data were acquired and the specific subtracks it includes 
(ex. gt1l gt1r).
2.2.1. Roselfsema photoquadrats
Roelfsema et al. (2018) provides a dataset of underwater benthic 

photos taken in a 2017 photo-transect survey of the Great Barrier Reef, 
including Heron Reef. These photos are captured orthogonal to the 
seafloor, positioned 0.5 m above 1 m 𝑥 1 m photoquadrats placed along 
the benthos, while a GPS records the location of the center of each 
photo. This dataset will be further discussed for its use as ground-
truth data in the validation of different geomorphic structures and 
algorithmically extracted rugosity values from ICESat-2 data.
3 
2.2.2. Allen Coral Atlas
The Allen Coral Atlas (ACA) was created by Arizona State Uni-

versity as a coral conservation tool, using high-resolution imagery 
from Planet’s PlanetScope satellites to map coral reefs around the 
world (Lyons et al., 2022). Combining remote sensing data, in situ
data, and existing coral classifications, the ACA developed reef cover 
(geomorphic zones) and benthic cover classes. These classifications 
rely on physical attributes of the data, such as depth, slope, exposure, 
color, texture, and spatial relationships (Kennedy et al., 2021). This 
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Fig. 3. Project workflow for data processing and data preparations for analysis.
dataset will be further discussed for its use in creating a ground-truth 
dataset. Also available from the ACA are satellite-derived bathymetry 
(SDB) values, derived from a composite spectral image created with 
Sentinel-2, Landsat-8, and Planet Dove images (Lyons et al., 2022).

2.3. Methodology

2.3.1. Workflow
The workflow for data processing and methods is found in Fig.  3; 

a more detailed description follows. The inputs to this workflow are 
ICESat-2’s ATL03 geolocated photon returns for the tracks shown in 
Fig.  2, and the ACA’s benthic classes shapefiles and SDB/depth geotif 
file. Additionally, the Roselfsema et al. photoquadrats (Roelfsema et al., 
2018) are used as reference data. Two different modeling methods 
(binary logistic regression and convolutional neural network) were 
used to classify sections of ICESat-2 tracks as ‘coral’ or ‘not coral’. In this 
context, ‘coral’ indicates that the window contains coral reef features. 
The following sections will elaborate on each stage of the workflow.

2.3.2. Data preprocessing and filtering
The data preprocessing algorithm combines the strong and weak 

ICESat-2 tracks, applies a refraction correction (Parrish et al., 2019), 
converts longitude and latitude coordinates to UTM Easting and Nor-
thing (𝑋 and 𝑌 ) coordinates, converts ellipsoidal depths to orthometric 
depths, and converts the data into easily processable csv files. These 
steps were taken to deal with the sub-surface nature of coral reefs and 
the noise inherent in ICESat-2 data.

Next, the data were run through a series of steps that algorithmically 
identifies bathymetric photon events. Initially, a histogram was created 
for the distribution of depth values for each ICESat-2 track. ICESat-2 
tracks are considered to be a straight line; thus, we utilized the UTM 
Northing coordinate to represent the along-track direction and assumed 
the UTM Easting coordinate does not differ substantially. The number 
of histogram bins was set to one-fourth of the number of photon events 
in the current track. The depth of the ocean surface was identified 
by selecting the depth (histogram bin) with the highest density of 
points. All points along the ocean surface or above were removed. 
Concurrently, the laser’s extinction point – i.e., the depth of the ocean 
beyond which LiDAR will not penetrate – was determined by analyzing 
the deepest reliable depth recorded from data categorized as a signal 
with high or medium confidence and nominal quality.
4 
Following the removal of surface and excessively deep points, any 
remaining noise was filtered out using confidence and quality flags 
from ICESat-2. Photons classified as nominal by the quality flag (most 
likely to not be noise) and that had a medium or high confidence 
flag for any surface type (i.e., ocean, sea ice, etc.) were retained as 
bathymetry. Post-filtering, any retained bathymetric points were con-
sidered to be the surface of the seafloor. Additionally, tracks containing 
fewer than 20 bathymetric points along the entire track post-filtering 
were excluded from further analysis (See Fig.  4 for an example of the 
results of these filtering procedures).

2.3.3. Pseudo-rugosity and slope: Parameter extraction from ICESat-2 data
2.3.3.1. Pseudo-rugosity.

Following the creation of files containing algorithmically extracted 
seafloor points, the focus shifted to extracting additional seafloor fea-
tures that may indicate the presence/absence of coral reef. It is well 
accepted in the benthic ecology community that rugosity serves as a 
proxy for the presence and frequency of coral reefs (i.e., low rugosity 
typically indicates fewer scleractinian corals, while high rugosity sug-
gests a greater abundance) and the presence of coral reefs. Similarly, 
slope has been widely recognized as a key indicator for identify-
ing geomorphic zones (as defined by the ACA), as it reflects the 
structural characteristics of the reef. In this study, we extracted a 
measure of slope and rugosity, which we refer to as ‘‘pseudo-rugosity’’, 
from the points denoting the surface of the seafloor. Our windows-
based ‘‘pseudo-rugosity’’ algorithm is inspired by the ‘‘chain-and-tape’’ 
method commonly used in situ to describe the complexity of a coral 
reef surface. The method calculates a ratio (𝑅) based on the length of 
a chain draped over the seafloor profile (𝐿) compared to the distance 
covered when the chain is fully extended (𝐷) (Walbridge et al., 2018) 
(Fig.  5) : 

𝑅 = 𝐿
𝐷

(1)

First, each ICESat-2 track was segmented into non-overlapping 20
m windows (i.e., subsections); unless otherwise stated, the term ‘‘win-
dow’’ is adopted throughout. To reduce any possible remaining noise 
from the data, each window was further segmented into 0.5 m sub-
windows, for which the minimum and median depth (𝑍, in meters) 
values were calculated. The median depth was likely to provide a more 
representative measure of the depth within each 0.5 m sub-window, 
while the minimum depth values were least likely to be noisy. During 
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Fig. 4. Example of an ICESat-2 track pre and post filtering. (a) depicts an unfiltered track. (b) depicts a filtered track where a best algorithmic estimate of the seafloor remains.
Fig. 5. A graphic of the windows-based pseudo-rugosity algorithm based on the ‘‘chain-
and-tape’’ method used to collect in situ data. Imagining the yellow dots represent 
ICESat-2 points, 𝐿 is constructed using the distance between each neighboring point. 
𝐷 is calculated by taking the length of the window. Rugosity is equal to the ratio of 
𝐿 to 𝐷. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

the development of this methodology, the significance of each value in 
coral reef detection was uncertain, so both were retained. The median 
depth was used for subsequent pseudo-rugosity calculations. This ap-
proach reduced redundancy in geographically overlapping data points 
and minimized overall data volume, possibly resulting from combining 
strong and weak tracks. A pseudo-rugosity value was calculated for 
each 20 m window, and the leading edge of each 20 m window was 
saved as the location of that window. The distance 𝐿̂ between two 
adjacent ICESat-2 points within a 20 m window (𝐿̂) was calculated 
using the Euclidean distance formula (Weisstein, 2024a): 

𝐿̂ =
√

(𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 (2)

where 𝑌  is the UTM Northing coordinate and 𝑍 is the depth value. 𝐿
is the sum of all 𝐿̂ within the window. For a window containing 𝑁
points, there are 𝑁 −1 estimated chain lengths, denoted as 𝐿̂. 𝐿 is then 
divided by 20 m (𝐷; the length of the window), which then produces 
a rugosity value for that window. We assumed minimal deviation in 
the UTM Easting direction, as ICESat-2 tracks are considered to be a 
straight line.
5 
Given the nature of ICESat-2 data, where not every 20 m window 
of each track contained bathymetric points, the pseudo-rugosity al-
gorithm considered multiple scenarios to ensure comprehensive data 
were captured across window boundaries. If a window contained no 
bathymetric points, it was assigned an error value of 999 and omitted 
from further analysis. If a window contained only one point, a rugosity 
value was not calculated, but that point does contribute to the rugosity 
calculation of adjacent windows. Windows with two or more points 
had their rugosity value partially constructed from points within the 
window, and additional values were computed using adjacent windows. 
Special cases were considered for windows at the beginning, end, or 
middle of a track, and detailed procedures for handling these scenarios 
are described in Appendix  A.

The rationale behind assigning error values and omitting windows 
without bathymetric points was to maintain the integrity of the analysis 
by filtering out noise or incomplete data. Given that ICESat-2 data 
can be sparse in certain regions due to environmental or instrumental 
factors, a method was necessary to ensure that the points contributing 
to the rugosity calculation accurately reflected the underlying seafloor. 
The decision to incorporate points from adjacent windows for the 
calculation in windows with two or more points helps to capture the 
local variability on the seafloor, ensuring that all available data are 
utilized effectively. This approach minimizes the impact of sparse or 
incomplete information, while also utilizing as much of the data as 
possible, leading to more accurate and comprehensive analysis.
2.3.3.2. Slope.

Slope was extracted from ICESat-2 data using the parameter extrac-
tion algorithm. The goal of this slope measurement was not to produce 
a ‘‘true’’ slope value, but instead to measure something we anticipate is 
indicative of reef presence. The slope algorithm employed followed the 
same 20 m window and scenario-based structure as the pseudo-rugosity 
algorithm. Slope was calculated between each neighboring ICESat-2 
point within a window using the formula (Weisstein, 2024b) (Fig.  6): 

𝑠 =
𝑧2 − 𝑧1
𝑦2 − 𝑦1

(3)

where 𝑌  is the UTM Northing coordinate and 𝑍 is the depth value. The 
slope equation used is well-suited for ICESat-2 data because it operates 
on point-based measurements of elevation and spatial coordinates, 
aligning with the satellite’s along-track sampling structure and ensuring 
accurate steepness estimation over small spatial scales.

The resulting slope value per window was the average of the ab-
solute value of all slopes calculated within that window. We assigned 
an error value of 999 to any window with 0 or 1 point and removed 
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Fig. 6. A graphic of the slope calculation. Imagining the yellow dots represent ICESat-2 
points, the slope between two points is calculated by dividing the change in elevation 
(the rise) over the change in distance (the run). (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

these windows from our dataset. Additionally, slope values of higher 
than 300% were discarded as erroneous. The output of the parameter 
extraction algorithm was a data file containing coordinates, rugosity, 
slope and averaged depth values for each 20 m window of each ICESat-
2 track, and were used as inputs to the machine learning models. We 
note that the 20 m window data structure created in these algorithms 
will be maintained moving forward.

2.3.4. Ground-truth dataset
A ground-truth dataset is essential for the verification of any ma-

chine learning algorithm. Our model aims to classify each distinct 20 m 
ICESat-2 window as containing coral reef or not. This was facilitated by 
utilizing QGIS (a free and open source GIS software (QGIS Development 
Team, 2024)) that allows for easy manipulation and visualization of 
remote sensing data.

The QGIS workflow began by loading the processed ICESat-2 data, 
as well as the ACA’s benthic classes shapefiles and bathymetry geotif 
file. The goal was to construct a ground-truth dataset that mirrors the 
spatial structure of ICESat-2 tracks while integrating the ACA’s benthic 
class information. The dataset produced by this workflow was then 
used for model fitting, where each row represents an individual 20 m 
window, labeled with the predicted variable (‘coral’ or ‘not coral’) and 
containing predictor variables, such as rugosity, depth, etc. The output 
of the parameter extraction algorithm was individual csv files for each 
ICESat-2 track reduced to 20 m windows, containing coordinates, SDB, 
depth, and extracted parameters of rugosity and slope. The files pro-
duced were first converted into vector shapefile formats and separate 
tracks were then combined into a single file. The ACA’s benthic classes 
for coral/algae and rock were combined to produce a single shapefile 
representing ‘coral’ and ‘not reef.’ This merged class taxonomy (Fig.  7) 
aligns with traditional ACA reef zones (crest, slope, and flats) and is 
likely to be detectable in ICESat-2 data.

To validate the decision to combine ACA classes, we performed a 
qualitative examination using photoquadrat data collected by Roelf-
sema et al. (2018). As shown in Fig.  7, areas classified as coral/algae 
and rock by the ACA coincided spatially with photoquadrats containing 
coral reef. Therefore, we proceeded to use the combined ACA’s rock and 
coral shapefiles as ground-truth for our reef classification.

Next, we merged ICESat-2 data with the reef shapefile to generate a 
csv file. This csv file contains labels ‘1’ (reef) and ‘0’ (not reef) for each 
ICESat-2 window, which were based on spatial overlap with the reef 
shapefile. Furthermore, SDB data from the ACA were extracted for the 
center of each window. The resulting csv, visualized in Fig.  8, serves as 
the foundational dataset for training the machine learning models.
6 
2.3.5. Surface generation from ICESat-2 data for testing
The ICESat-2 tracks for Heron and Wistari reefs do not provide 

complete coverage for the entire area (Fig.  2). Though the traditional 
approach for building machine learning models would be to split 
the ICESat-2 tracks and their associated ‘coral’/‘not coral’ classes into 
testing and training sets, this method does not provide any insight into 
the model’s performance across the entire study site. To validate the 
model over the entire study site, including areas not covered by ICESat-
2 tracks, we used Voronoi polygons (also known as Thiessen polygons). 
These polygons were constructed using the center points of each 20 m 
window to estimate input parameters derived from ICESat-2 data, such 
as depth, slope, and rugosity. These polygons define areas of influence 
around each sample point, ensuring all points within a polygon are 
closer to its corresponding sample point than to any other (Yamada, 
2016). Fig.  9 illustrates a graphical representation of Voronoi polygon 
construction across the entire study area.

By dividing the study area into Voronoi polygons using ICESat-2 
data as sample points, we assigned specific attribute values, including 
rugosity, slope, and minimum and median depth to each polygon. 
Coordinates for the center of each polygon (UTM Easting and Northing) 
and SDB were obtained using QGIS and the ACA’s SDB bathymetry 
file. Ground-truth labels of ‘coral’ or ‘not coral’ for this dataset were 
obtained utilizing the ACA’s benthic class shapefiles. The resulting 
surface, composed of Voronoi polygons labeled as ‘coral’ or ‘not coral’, 
was used for testing the machine learning models. This process did not 
produce a smooth surface; instead, each polygon represents a window 
with a single value, reflecting the discrete nature of the data and the 
lack of spatial auto-correlation in coral locations throughout the lagoon.

2.3.6. Machine learning models
To achieve the best possible accuracy in identifying coral reefs 

along ICESat-2 tracks, we employed two different modeling methodolo-
gies: binary logistic regression (BLR) and convolutional neural network 
(CNN), both implemented in Python. The BLR serves to model general 
trends and relationships within the data, offering a straightforward 
and interpretable baseline for understanding the broader patterns of 
coral reef presence. In contrast, the CNN algorithm is designed to 
exploit finer details or ‘‘micro trends’’ in the dataset, which may lead 
to improved classification performance. A simple CNN architecture 
was selected over hybrid or more complex models due to its bal-
ance of performance, computational efficiency, and interpretability. 
This simplicity ensures the model is efficient and robust while avoid-
ing unnecessary overhead, making it particularly well-suited for this 
application.

The variables used to train and test both models were rugosity, 
slope, the UTM Easting (𝑋) and Northing (𝑌 ) coordinates of the initial 
edge of each window, the minimum and median depth values of ICESat-
2 photon events algorithmically identified as bathymetry for a given 
window, and the ACA’s SDB. Analysis indicated that all variables were 
statistically significant with a 𝑝-value of less than 0.0001. Both models 
were trained on all available windows for ICESat-2 tracks, while testing 
was conducted on labeled parameters extracted from the generated 
Voronoi polygon surface.

Due to the positioning of ICESat-2 tracks over this reef, there exists 
an inherent imbalance in the training data, with approximately 1 track 
containing coral for every 9 tracks that do not. This imbalance posed 
a risk of the models disproportionately favoring the majority class 
(‘not coral’) during training. To address this imbalance and minimize 
potential overfitting, several precautionary steps were implemented for 
both models. First, models were fit with balanced class weights to 
adjust for the disproportionate representation of classes in the data. 
Balancing the data adjusts the weights for each class based on the 
frequencies of each class in the data. For example, the weights for class 
1 are calculated as: 
𝑤 = 𝑁 (4)
(𝑛 ⋅ 𝑐)
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Fig. 7. Visualization of the ACA’s benthic classes with Roelfsema et al.’s photoquadrat images (Roelfsema et al., 2018). The blue indicates the coral/algae benthic class, while the 
green indicates the rock benthic class. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Visualization of ground-truth dataset created in QGIS, where each point indicates a 20 m ICESat-2 window. The green dots indicate no reef presence and the purple dots 
indicate reef presence. An example of an associated csv file can be found at the bottom of the figure, where each row represents a point in the map. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Graphical depiction of Voronoi polygons, illustrating how each polygon is 
constructed around sample points, with boundaries equidistant between neighboring 
sample points.

where 𝑤 is the weight assigned to class 1, 𝑁 is the total number 
of samples, 𝑛 is the number of classes, and 𝑐 is the number of class 
1 samples in the data (Pedregosa et al., 2023b). Second, all input 
variables were standardized, allowing us to compare data with different 
scales by scaling to unit variance. Standardized data were calculated as:

𝑧 =
(𝑥 − 𝜇)

𝜎
(5)

where 𝑧 is the standardized data, 𝑥 is the sample value, 𝜇 is the mean 
of the data and 𝜎 is the standard deviation of the data (Pedregosa et al., 
2023a). Finally, L2 (i.e., ridge regression) penalties were added to both 
models to mitigate overfitting. Together, these steps ensured that the 
models accounted for the imbalanced nature of the data and maintained 
robust performance across all classes.

Binary logistic regression (BLR) models classify data using the 
logistic sigmoid function, which constrains the output to a range 
between 0 and 1. The BLR employed here aims to classify ICESat-
2 data by estimating the probability that a given window contains 
coral. This was done using the standard logistic regression model from
sklearn.learn_model, with the L-BFGS solver. The L-BFGS solver is a 
quasi-Newton optimization method that uses a limited-memory version 
of the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Encyclo-
pedia of Mathematics, 2024). L-BFGS is particularly well-suited for 
large-scale problems because it reduces memory usage by approximat-
ing the Hessian matrix using only a few vectors. The maximum number 
of iterations was set to 10000 to ensure convergence. Hyperparameters 
of the model, such as the solver method and tolerance, were fine-
tuned using a grid search technique to enhance model performance and 
achieve the best classification results.

Convolutional neural networks (CNN) use a combination of con-
volutional layers, pooling layers, and dense layers in order to make 
predictions using data with a grid-like topology (Goodfellow et al., 
2016). Initially, a CNN learns and extracts features through convolution 
and max pooling. The final classification was performed using fully 
connected layers. The CNN’s structure was designed to identify patterns 
in the data that indicate the presence of coral reefs. For a detailed 
understanding of CNNs, refer to Goodfellow et al. (2016), Madhavan 
(2021).

After exploring alternatives, including 2-D convolutions with ob-
servation stacking, we found that a 1-D convolutional structure was 
most effective for analyzing the linear and time-series-like ICESat-2 
data. This architecture aligns with the sequential nature of ICESat-2 
8 
Fig. 10. Architecture of 1-D CNN.

tracks, where observations are ordered spatially along the satellite’s 
path, making 1-D convolutions ideal for capturing local spatial patterns 
without unnecessary complexity. The CNN architecture, depicted in Fig. 
10, contains two sets of convolutional and max pooling layers, followed 
by a flattening layer and a fully connected activation layer. The first 
layer of the model was a convolutional layer with 22 nodes, a (5 × 1)
window, and ReLU activation. The second layer was a (2 × 1) max 
pooling layer. The third layer was another convolutional layer with 44 
nodes, a (3 × 1) window, and ReLU activation. The fourth layer was a 
(2 × 1) max pooling layer. The fifth layer was a flattening layer, which 
takes our data from (7 × 1× 44) to (308× 1). The final layer was a dense 
layer with ReLU activation that produced a binary classification output.

The CNN was implemented using the sequential model from tensor-
flow.keras and utilizes the adam optimization solver, which combines 
the benefits of the stochastic gradient descent method with adaptive 
learning rates to improve convergence efficiency (Keras, 2023). To 
mitigate overfitting, early stopping with a patience of 50 epochs was 
employed to minimize loss and ensure that training stopped when the 
validation loss ceased improving. L2 regularization was strategically 
applied to the convolutional layer that exhibited greater influence 
within the model, helping to constrain the weights and reduce overfit-
ting. Additionally, hyperparameters of the model, such as the learning 
rate, batch size, and number of nodes, were fine-tuned using a grid 
search technique to optimize performance and achieve the best results 
possible.

2.3.7. Feature importance analysis
Identifying the most important features in ML algorithms is crucial 

for understanding which variables influence the model’s ability to 
detect coral reefs. For the BLR models, feature importance was defined 
by comparing the absolute value of the standardized scores for each 
variable. Standardized scores are calculated by subtracting the expected 
value according to the null hypothesis (typically zero) from the BLR 
regression coefficients, and then dividing by their associated standard 
errors. Neural networks are often described as ‘‘black boxes’’ because, 
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Fig. 11. Histogram of the distribution of pseudo-rugosity values. Values below the 
33rd percentile are classified as low rugosity, values above the 66th percentile are 
classified as high rugosity, and values between the two thresholds are classified as 
medium rugosity.

although we know how they work, we are often unable to explain 
the patterns they extract from the data in order to make classifica-
tions. However, one way to determine the most important predictor 
variables is by measuring the permutation feature importance, which 
evaluates how the model’s prediction error changes when each fea-
ture is permuted. For predictor error, we analyzed the changes in F1 
score in relation to different combinations of features. Pseudo-code for 
this approach, provided by Molnar (Molnar, 2022), can be found in
Appendix  B.

3. Results

3.1. Parameter extraction results

The parameter extraction algorithm produced additional metrics 
from ICESat-2 data; namely, pseudo-rugosity and slope. These values 
provided insight into the variability of the seafloor’s complexity across 
the study area. The following sections present the results of these 
metrics in both geographic and statistical contexts.

3.1.1. Pseudo-rugosity
Rugosity values were categorized into high, medium, and low 

groups for visualization, as shown in Fig.  11. Thresholds for these 
categories were determined using the 33rd and 66th percentiles of 
the rugosity distribution, identified through a histogram. Values below 
or equal to the 33rd percentile were classified as low, those between 
the 33rd and 66th percentiles as medium, and those above the 66th 
percentile as high. This approach ensures that the categories reflect the 
relative distribution of rugosity values, making it easier to compare and 
interpret them.

The results of the pseudo-rugosity algorithm displayed geographi-
cally are shown in Fig.  12.

Referencing 20 different photoquadrats from Roelfsema et al. (2018)
that intersect with ICESat-2 tracks and are located along similar ge-
omorphic structures, we were able to qualitatively verify that the 
pseudo-rugosity values are related to the geomorphology they describe. 
See Fig.  13 for examples of high, medium, and low rugosity classifica-
tions, the associated photoquadrat, and their location around Heron 
Reef. The photoquadrats associated with low rugosity were mostly 
sand, whereas those associated with high rugosity contained a variety 
of corals. Medium rugosity photoquadrats contained a mix of sand and 
corals or contained table/brush corals, such as Acropora spp.
9 
3.1.2. Slope
Similarly to the pseudo-rugosity values, slope values were cate-

gorized into high, medium, and low groups for visualization. Fig. 
14 shows the distribution of slope values. The thresholds for these 
categories were determined using the 33rd and 66th percentiles of the 
distribution, consistent with the approach used for rugosity.

The results of the slope algorithm displayed geographically are 
shown in Fig.  15.

Similar to the verification process for the pseudo-rugosity values, 
we used 20 different photoquadrats from Roelfsema et al. (2018) 
that intersect with ICESat-2 tracks to qualitatively verify that the 
slope values are related to the geomorphology they describe. See 
Fig.  16 for examples of high, medium, and low slope classifications, 
the associated photoquadrat, and their location around Heron Reef. 
The photoquadrats associated with low slope values were mostly flat 
sand areas or areas containing table/brush corals. In contrast, those 
associated with high slope values corresponded to steeper geomorphic 
features such as reef slopes. Medium slope photoquadrats contained 
mixtures of gently sloping coral structures, such as those located along 
the reef crest.

3.2. Model performance

The results of the machine learning models’ ‘coral’/‘not coral’ clas-
sification were summarized using metrics derived from the models’ 
ability to predict ‘coral,’ including global accuracy, recall, F1 scores, 
false positive rate (FPR), and confusion matrices. Fig.  17 compares the 
performance of the BLR and CNN models in their ability to identify 
coral presence. The CNN demonstrated superior performance across 
multiple metrics. The BLR achieved a relatively high recall for coral 
predictions (92.9%), indicating effective identification of positive in-
stances of coral reefs. However, this came at the cost of a high FPR for 
coral predictions (25.7%), meaning it frequently misclassified non-reef 
areas as coral. This tendency to overestimate coral presence introduces 
a bias in the BLR model, as seen in the F1 score (43%), potentially 
leading to an overestimation of coral reef coverage. In contrast, the 
CNN outperformed the BLR in terms of accuracy (85.4%) and FPR 
(13.1%) and produced a comparable F1 score to the BLR (49%). This 
demonstrates a more balanced performance in accurately predicting 
coral presence, thereby reducing the likelihood of overestimating coral 
coverage.

In addition to evaluating the models’ ability to predict coral pres-
ence, it is important to assess how well they identify ‘not coral’ areas. 
The F1 score was chosen to provide a comprehensive measure of model 
performance, as it balances recall and precision. Major data imbalances, 
where one class (such as ‘not coral’ in our case) significantly outweighs 
the other, can lead to misleading F1 scores, potentially obscuring 
the model’s true performance across both classes. While efforts have 
been made to address data imbalances during model development, we 
evaluate the F1 scores from both perspectives to gain a more holistic 
understanding of the models’ overall performance. The BLR model 
achieved an F1 score of 85% for ‘not coral’ predictions, indicating a 
balanced performance in identifying non-reef areas with reasonable 
precision and recall. In comparison, the CNN outperformed the BLR 
with a higher F1 score of 91.5%, demonstrating stronger overall ac-
curacy in distinguishing ‘not coral’ regions. Notably, the CNN’s F1 
score for ‘not coral’ predictions (91.5%) was slightly higher than its F1 
score for coral predictions (49%), suggesting that the model is slightly 
more effective at identifying ‘not coral’ areas than coral regions. These 
results highlight the CNN’s superior capability in identifying non-coral 
areas, making it a more effective model for this aspect of classification. 
Consequently, the CNN is more reliable in distinguishing ‘‘true’’ coral 
reef areas from non-reef features, as well as vice-versa, making it a more 
robust and balanced model compared to the BLR for this classification 
task.
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Fig. 12. Results of the pseudo-rugosity algorithm, categorized into high, medium, and low rugosity.
Fig. 13. Examples of high, medium, and low rugosity classifications, the associated photoquadrat and their location around Heron Reef. Photoquadrat images, part of a larger 
study conducted by Roelfsema et al. (2018) from 2011 to 2017, were collected in 2017. This study involved the collection of photoquadrats across the Great Barrier Reef.
3.3. Feature importance

Our feature importance analysis revealed that SDB was the most 
important feature in the BLR model, with rugosity and the UTM Easting 
coordinate as the next most important features (See Fig.  18). For the 
CNN, the associated features were ranked by changes in F1 score (See 
Fig.  19). Similarly to the BLR, SDB was identified as the predominant 
predictor. The minimum depth was the next most important, and 
rugosity and median depth were the next most important and roughly 
the same.
10 
To assess how our algorithmically derived features (rugosity and 
slope) influence coral reef detection accuracy, we applied the permu-
tation feature importance method to both the BLR and CNN models. 
Rather than focusing on which variable caused the greatest change in 
accuracy, we examined how much accuracy declined when each feature 
was excluded. Excluding rugosity reduced accuracy by 0.87% in the 
BLR and 0.01% in the CNN. Similarly, excluding slope resulted in a 
decrease of 0.2% in the BLR and 0.007% in the CNN. These results 
indicate that the BLR model is significantly more sensitive to changes in 
feature inclusion than the CNN. Furthermore, rugosity consistently had 
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Fig. 14. Histogram of the distribution of slope values. Values below the 33rd percentile 
are classified as low slope, values above the 66th percentile are classified as high slope, 
and values between the two thresholds are classified as medium slope.

a greater influence on detection accuracy in both models, highlighting 
its critical role in identifying coral reefs.

4. Discussion

These steps toward identifying and delineating coral reef habitats 
establish a foundation for a reliable, cost-effective, and economical 
alternative for monitoring changes in coral reefs with a high-resolution 
and frequency dataset. In general, our results indicate that this method 
effectively identifies the presence of coral reefs. The application of 
convolutional neural networks (CNNs) offers promising results, sug-
gesting satellite-based methods as a valuable tool for environmental 
monitoring. Furthermore, understanding the specific environmental 
variables driving coral reef detection enhances our ability to optimize 
and refine machine learning models, as well as direct decisions for 
data collection. Feature importance analyses identified SDB as the most 
important predictor in both models. If SDB is not readily available, a 
surrogate measurement may be needed. Rugosity, UTM coordinates, 
and depth variables also contributed substantially to the predictive 
capabilities of the models, underscoring their relevance in coral reef 
detection. While our rugosity and slope metrics were related to the 
geomorphology they describe, only rugosity proved to be an essential 
contributor to our models. The findings of this study suggest several 
practical implications for coral reef conservation and management, 
particularly in the context of remote sensing and machine learning.

The pseudo-rugosity and slope metrics developed in this study offer 
a proxy for coral reef presence. The use of ICESat-2 data, combined 
with the ‘‘chain-and-tape’’ inspired rugosity method and slope calcu-
lation, provided an innovative approach to remotely sensing benthic 
environments and effectively captured the complexity of the seafloor. 
Rugosity proved especially valuable for distinguishing coral reefs from 
smoother, non-reef areas, as indicated by its significant influence on 
model performance. Excluding rugosity caused noticeable declines in 
detection accuracy in both models, underscoring its critical role in 
coral reef detection. Similarly, slope contributed to detection accuracy, 
although its impact was less pronounced. These findings emphasize 
the importance of geomorphological features in refining coral reef 
detection models. Future research could integrate additional environ-
mental variables and quantitative ground-truth data to improve model 
accuracy. Nonetheless, this study demonstrated the effectiveness of 
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combining these metrics derived from ICESat-2 data for coral reef 
detection and established a foundation for its use in monitoring efforts.

The accuracy of our models’ ability to identify coral reef presence 
directly impacts our estimation of coral reef extent, which is criti-
cal for ecological monitoring and conservation efforts. For instance, 
models with high recall but elevated FPRs, such as the BLR model, 
risk overestimating coral reef coverage. This misrepresentation can 
lead to inefficient resource allocation or misguided conservation efforts 
targeting non-reef areas. Conversely, false negatives, where actual coral 
reef areas are misclassified as non-coral, hinder conservation by leaving 
vulnerable reef areas unprotected. The CNN model, with its lower FPR 
and higher overall accuracy, reduces this bias by providing a more 
balanced approach that minimizes the risk of overestimation and offers 
a more accurate representation of coral extent. While this balanced 
approach reduces false positives and negatives, challenges remain in 
detecting subtle changes in reef extent, which is especially important 
for coral reef monitoring.

Despite the CNN’s superior performance metrics and its potential for 
operational use in automated coral reef mapping from satellite data, 
limitations persist. These models may struggle to detect smaller or 
subtle changes in reef extent, particularly when applied to a monitor-
ing methodology. These smaller changes may fall within the margin 
of error associated with the ICESat-2 data and the models, making 
it difficult to detect them reliably. Consequently, these methods are 
better suited for detecting substantial changes in reef coverage, which 
are more likely to be identified and confirmed with high certainty. 
Given that coral reefs typically change slowly under natural conditions, 
the models may only reliably detect larger changes occurring due to 
extreme weather events. Reducing both over- and under-estimations 
of coral coverage will improve the chances of detecting more subtle 
changes. However, this method’s ability to detect large-scale changes 
is advantageous. For example, large-scale bleaching events result in the 
degradation of coral reefs and reduced rugosity, which can be identified 
by our model. This capability is advantageous for conservation and 
management, as it helps prioritize areas most susceptible to climate 
change impacts.

Through the use of ICESat-2 data, we illustrate the advantages of 
using satellite-based remote sensing for coral reef detection, addressing 
some of the limitations inherent in data traditionally used for coral 
reef research. ICESat-2 data are advantageous in this research because 
they are free to access and download, while traditional data collection 
methods are often costly and logistically challenging. The availability of 
ICESat-2’s satellite data makes it a valuable resource for ocean-related 
research, allowing for wide-scale detection of coral reefs, especially 
for those reefs with limited access. Additionally, as more ICESat-2 
data becomes available, we anticipate improved results. Specifically, 
an increase in data may make this method useful for detecting seasonal 
changes in coral reefs. This research contributes to the growing body 
of knowledge on the use of ICESat-2 data for ocean-related purposes 
and highlights the potential for further innovation in remote sensing 
techniques for environmental monitoring.

While the use of ICESat-2 data and CNN models presents numerous 
benefits, there are limitations that must be acknowledged. This study 
focused primarily on a specific geographic region and reef type; Heron 
Island and its atoll reefs. These reefs are characterized by well-defined 
reef flats, clear lagoonal waters, and relatively straightforward bathy-
metric features, which provide an optimal test bed for methodology 
development. Thus, it is important to note that the results of this study 
may not be perfectly transferable to non-lagoonal coral reefs. Reefs 
that lack the clear, abrupt transition from reef to non-reef may present 
challenges for the model. In these systems, the less defined boundary 
between the reef and non-reef areas could complicate the detection of 
features like rugosity. The model may experience reduced accuracy in 
such environments, where gradual transitions lead to less pronounced 
differences in physical characteristics. Additionally, variables critical to 
this model, such as SDB, may behave differently in ecosystems with 



G.A. Trudeau et al. Ecological Informatics 87 (2025) 103099 
Fig. 15. Results of the slope algorithm, categorized into high, medium, and low slope values.
Fig. 16. Examples of high, medium, and low slope classifications, the associated photoquadrat and their location around Heron Reef. Photoquadrat images, part of a larger study 
conducted by Roelfsema et al. (2018) from 2011 to 2017, were collected in 2017. This study involved the collection of photoquadrats across the Great Barrier Reef.
unique physical and biological properties, requiring adjustments to the 
algorithm or the incorporation of new inputs. Despite these challenges, 
the methodology developed here lays a strong foundation for testing 
its scalability to other reef ecosystems and potentially broader marine 
environments. A natural next step in this research will be to extend 
the analysis to other diverse reef ecosystems to test the robustness 
and generalizability of our findings. Expanding the scope to include 
more varied reef types will provide insight into the limitations and 
adaptability of ICESat-2 data and machine learning models for global 
coral reef monitoring.
12 
5. Conclusions

In conclusion, the integration of machine learning models with 
ICESat-2 remote sensing data offers a promising approach for advancing 
coral reef research and management. This study demonstrates the po-
tential of combining seafloor complexity metrics, such as rugosity and 
slope, with machine learning to improve coral reef detection. Future 
research directions should prioritize continued exploration and refine-
ment of machine learning algorithms, as well as the incorporation of 
additional environmental variables to enhance model accuracy. While 
the integration of rugosity and slope metrics provides key indicators 
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Fig. 17. Evaluative metrics for distinguishing ‘coral’ from ‘not coral’ for each machine 
learning model tested.

Fig. 18. Relative feature importance for the BLR model.

Fig. 19. Relative feature importance for the CNN using F1 score.

of seafloor complexity, these methods remain constrained by data 
availability and the challenges of validating results in remote coral reef 
environments. Addressing these challenges will require further in situ
validation and an assessment of how well these approaches generalize 
across diverse reef ecosystems. The findings presented here not only 
advance the field of coral reef detection but also provide a foundation 
for future research aimed at utilizing ICESat-2 and similar datasets for 
broader environmental applications. By identifying areas of ecological 
importance and vulnerability, these methods empower policymakers 
and resource managers to allocate conservation efforts and funding 
more effectively. Furthermore, the ability to monitor reef conditions at 
large spatial scales supports adaptive management strategies, ensuring 
long-term assessment and response to environmental changes such as 
coral bleaching, coastal development, and climate-induced shifts in reef 
ecosystems. By harnessing advanced algorithms to enhance ecological 
research, particularly in spatial ecology, this study contributes to a 
13 
more comprehensive understanding of coral reefs and supports their 
protection in the face of ongoing environmental challenges.
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Appendix A. Pseudo-rugosity algorithm pseudo code

We detail the specific scenarios for the two or more points case 
below:

If the current window is...

1. the first window of a track:

(a) Calculate the distance between every point in the current 
window: 𝐿̂𝑖𝑛.

(b) Utilize the next window’s first point to calculate the dis-
tance to the boundary of the window along the path from 
the current window’s last point to the next window’s first 
point: 𝐿̂𝑛𝑒𝑥𝑡. If there are no points in the next window, 
𝐿̂𝑛𝑒𝑥𝑡 is calculated using the same depth as the current 
window’s last point.

(c) Sum all distances: 𝐿 =
∑

𝐿̂𝑖𝑛 + 𝐿̂𝑛𝑒𝑥𝑡

2. the last window of the track:

(a) Calculate the distance between every point in the current 
window: 𝐿̂𝑖𝑛.

(b) Utilize the previous window’s last point to calculate the 
distance to the boundary of the window along the path 
from the current window’s first point to the previous 
window’s last point: 𝐿̂𝑝𝑟𝑒𝑣. If there are no points in the 
previous window, 𝐿̂𝑝𝑟𝑒𝑣 is calculated using the same depth 
as the current window’s first point.

(c) Sum all distances: 𝐿 =
∑

𝐿̂𝑖𝑛 + 𝐿̂𝑝𝑟𝑒𝑣

3. neither the first or last window of the track:

(a) Calculate the distance between every point in the current 
window: 𝐿̂ .
𝑖𝑛
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(b) Utilize the previous window’s last point to calculate the 
distance to the boundary of the window along the path 
from the current window’s first point to the previous 
window’s last point: 𝐿̂𝑝𝑟𝑒𝑣. If there are no points in the 
previous window, 𝐿̂𝑝𝑟𝑒𝑣 is calculated using the same depth 
as the current window’s first point.

(c) Utilize the next window’s first point to calculate the dis-
tance to the boundary of the window along the path from 
the current window’s last point to the next window’s first 
point: 𝐿̂𝑛𝑒𝑥𝑡. If there are no points in the next window, 
𝐿̂𝑛𝑒𝑥𝑡 is calculated using the same depth as the current 
window’s last point.

(d) Sum all distances: 𝐿 =
∑

𝐿̂𝑖𝑛 + 𝐿̂𝑝𝑟𝑒𝑣 + 𝐿̂𝑛𝑒𝑥𝑡

𝐿 is then divided by 20 m (the length of the window) to derive 
the resulting pseudo-rugosity value for that window. Considering all 
possible scenarios ensures comprehensive data captured across window 
boundaries.

Appendix B. Permutation feature importance algorithm

Algorithm 1 Permutation Feature Importance Algorithm (Molnar, 
2022)
Require: Trained model 𝑓 , feature matrix 𝑋, target vector 𝑦, error 

measure 𝐿(𝑦, 𝑓 ) (ie. accuracy, f1-score, etc.).
1: Estimate the original model error: 𝑒𝑜𝑟𝑖𝑔 = 𝐿(𝑦, 𝑓 (𝑋))
2: for each feature 𝑗 ∈ {1,… , 𝑝}, do
3:  Generate feature matrix 𝑋𝑝𝑒𝑟𝑚 by permuting feature 𝑗 in the data 

𝑋.
4:  Estimate error 𝑒𝑝𝑒𝑟𝑚 = 𝐿(𝑦, 𝑓 (𝑋𝑝𝑒𝑟𝑚)) on predictions of the 
permuted data.

5:  Calculate permutation feature importance as difference: 𝐹𝐼𝑗 =
𝑒𝑝𝑒𝑟𝑚 − 𝑒𝑜𝑟𝑖𝑔

6: Sort feature by descending 𝐹𝐼 .

Data availability

ICESat-2 data is available for download from https://nsidc.org/
data/icesat-2/data. The Roelfsema photoquadrats can be found at 
https://doi.org/10.1594/PANGAEA.894801 and were not modified. 
The shapefiles for the Allen Coral Atlas are available for download from 
https://allencoralatlas.org/atlas/#12.42/-23.4644/151.9470.
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