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As anthropogenic impacts threaten natural habitats, effective monitoring strategies are crucial. Coral reefs,
among the most vulnerable ecosystems, traditionally employ monitoring techniques that are labor-intensive
and costly, prompting the exploration of remote sensing as a cost-effective alternative. Launched in October
2018, the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) provides high-resolution, high-frequency data,

Keywords:
ICESat-2

Coral reefs
Machine learning
Rugosity

Heron island

with its green laser offering unprecedented opportunities for bathymetric and coral reef applications. This study
investigates the use of ICESat-2 data for atoll coral reef detection, utilizing Heron Island in the Great Barrier
Reef, AU, and employing machine learning models. A binary logistic regression (BLR) model and convolutional
neural network (CNN) were tested for determining coral reef presence, with the CNN outperforming the BLR
in accuracy (85.4%), F1 score (43%), and false positive rate (13.1%). A challenge of the study included the
difficulty of balancing false positive rates in predictive models to avoid over- or underestimations of reef
extent. These obstacles were mitigated through the integration of algorithmically derived pseudo-rugosity and
slope metrics as innovative proxies for seafloor complexity, significantly improving predictive performance.
Feature importance analysis identified satellite-derived bathymetry (SDB) depth as the most critical predictor
of coral presence, followed by pseudo-rugosity, slope, and various other depth measurements. This research
establishes a new application of ICESat-2 data combined with advanced machine learning techniques as a
promising method for efficient and cost-effective coral reef monitoring. Future work should refine algorithms
and incorporate additional environmental variables to improve model performance across various reef types.

1. Introduction

As anthropogenic impacts increasingly threaten natural and human
habitats, it becomes imperative that relevant research is maintained
to lessen these threats. Among the ecosystems susceptible to these
changes, coral reefs and their associated benthic habitats stand out
as particularly vulnerable. Current coral reef monitoring techniques,
such as manta tow surveys and fixed site surveys using photography
and visual counts, require significant human effort to collect in situ
data (Australian Institute of Marine Science, 2023). Furthermore, these
methods are restricted to small spatial extents, typically on the or-
der of meters. These limitations highlight the need for scalable and
cost-effective alternatives.

Remote sensing technologies provide a promising alternative so-
lution for monitoring coral reefs across large spatial extents that is
reliable, cost-effective, and economical. In geomorphic and habitat
mapping, the literature identifies satellite imagery, such as multispec-
tral imagery (Caras et al., 2017; Gazi et al., 2020; Li et al., 2020;
Munawaroh et al., 2021), hyperspectral imagery (Mishra et al., 2007;

Diaz et al.,, 2024), or a combination of both (Bajjouk et al., 2019)
as the primary remote sensing datasets. Traditional light detection
and ranging (LiDAR) instrumentation has also demonstrated excep-
tional capability in producing highly accurate and detailed coral reef
maps (Harris et al.,, 2023; Amani et al., 2022). Satellite imagery of-
fers large-scale coverage of the world, typically with frequent data
acquisition, making it an effective data source for monitoring reef
extent. However, satellite imagery is inherently limited by its inability
to penetrate water and capture underwater features, a critical capa-
bility for detailed coral reef and bathymetric mapping. On the other
hand, LiDAR data offers highly accurate, higher-resolution bathymetric
data, making them ideal for assessing seafloor complexity. However,
LiDAR systems are expensive, logistically challenging, and typically
used for regional-scale mapping rather than broad, large-scale reef
monitoring. Space-based LiDAR platforms such as the Ice, Cloud, and
Land Elevation Satellite-2 (ICESat-2) represent an emerging alternative
that combines the strengths of these two approaches. ICESat-2 provides
wide-scale coverage similar to satellite imaging, while also delivering
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bathymetric accuracy akin to LiDAR data, offering a balanced com-
promise between detail and accessibility. This unique capability makes
ICESat-2 an advantageous tool for coral reef monitoring, enabling large-
scale assessments with sufficient resolution to capture ecologically
significant features.

ICESat-2 was launched in October 2018 to collect elevation mea-
surements of the Earth. It follows as the second generation of the
original laser altimeter, ICESat, that was in service from 2003 to 2009.
While initially intended for collecting data regarding changes in the
cryosphere, the green laser aboard ICESat-2 opens the door to an
abundance of oceanic and bathymetric applications (National Snow and
Ice Data Center, 2024). Initial studies have validated ICESat-2’s capa-
bility for extracting bathymetry (Parrish et al., 2019; Ma et al., 2020;
Ranndal et al., 2021). However, as a space-based LiDAR system, ICESat-
2 faces challenges such as underwater light scattering and noisy photon
signals, which can affect the quality and accuracy of its data for marine
applications (Zhang et al., 2024; Xie et al., 2024; Song et al., 2024;
Wen et al.,, 2024). Recent studies have introduced various filtering
techniques (sometimes referred to as “denoising” or “decomposing”)
(Zhu et al., 2024; Yin et al., 2024; Wang et al., 2023) to address these
challenges and improve the reliability of ICESat-2 data. Despite these
challenges, extracting bathymetry using a single dataset such as ICESat-
2 offers significant advantages, including simplicity, consistency, and
reproducibility. It also streamlines workflows, such as our own, that
rely on bathymetric data.

Many studies that evaluate ICESat-2’s bathymetric performance in
combination with other datasets, such as multispectral satellite imagery
from Sentinel-2 (Babbel et al., 2021; Xu et al.,, 2021; Hsu et al.,
2021; Gleason et al., 2021; Zhang et al., 2022), conclude that ICESat-2
alone does not provide a strong monitoring capability. Other notable
approaches use deep learning with ICESat-2 and multispectral data
for coral reef classification (Ai et al,, 2024) and geomorphic zone
mapping (Zhong et al., 2024). While combining datasets can enhance
results, it also increases computational and analytical complexity and
may introduce additional noise or errors, potentially impacting the
reliability of the model and its outcomes.

Recent advancements in machine learning have seen a wide vari-
ety of models developed for predictive purposes (Abu-Hashem et al.,
2024). Models such as the LSTM-INFO (Adnan et al., 2023) and RVM-
DMOA (Adnan et al., 2024) have shown effectiveness in tasks such
as time series modeling. These models often incorporate hybrid or
ensemble approaches to enhance predictive accuracy and handle the
temporal variations inherent in time series data. However, the task
of coral reef detection presents unique challenges that differ from
traditional time series applications. Although hybrid models can offer
increased flexibility and predictive power, they often introduce addi-
tional complexity in model training and implementation, which may
not be necessary for this application. We have opted to use models that
efficiently capture spatial features while maintaining a straightforward
architecture. This study achieves a balance between model performance
and interpretability, ensuring that the methodology remains accessible
while addressing the core challenges of the task.

To extend the utility of ICESat-2 data alone, numerical parameters
such as slope and rugosity extracted from ICESat-2 are explored in
this study. While these parameters have been explored in geomor-
phic studies, their application in comprehensive coral detection from
LiDAR remains underutilized. Though studies on coral reef mapping
naturally focus on sites with corals, there is a gap in the literature
explicitly addressing the comprehensive detection of coral presence.
This study addresses this gap by leveraging ICESat-2 data with machine
learning techniques to detect coral reefs near Heron Island in the
Great Barrier Reef, Australia. Using a binary logistic regression (BLR)
model and convolutional neural network (CNN), this research evaluates
the potential of ICESat-2 to be a cost-effective solution to coral reef
detection and other related research. The results provide foundational
insights into the utility of ICESat-2 data for marine applications and
demonstrate its value as a reliable, high-resolution, and temporally
frequent data source for monitoring coral reefs. By advancing remote
sensing methodologies, this work contributes to the efficient processing
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and application of ICESat-2 data, with implications for both coral reef
research and broader environmental monitoring efforts.

2. Materials and methods
2.1. Study area

Our study site is the coral cay of Heron Island (23° 27’ S., 151 ° 57
E.) and a neighboring reef, Wistari Reef (23° 28’ S., 151° 53’ E.), located
at the southern tip of the Great Barrier Reef in Australia (Fig. 1). These
reefs are lagoonal reefs, also known as atolls, which are characterized
by well-defined reef flats that slope downward along their perimeters
and lagoons filled with coral patches. This unique and straightforward
reef structure minimizes environmental complexity, making the site an
ideal test bed for developing and validating a coral reef monitoring
methodology. Additionally, these reefs, which are home to 72% of
all coral species on the Great Barrier Reef, exhibit exceptionally high
biodiversity. By selecting this site, we establish a strong foundation for
testing and validating our approach under ideal conditions, maximizing
the potential for accurate, reliable, and scalable monitoring of coral
reefs. This proof of concept underscores the feasibility and effectiveness
of our methodology, paving the way for its application in more complex
and diverse reef environments.

2.2. ICESat-2 data

ICESat-2, containing the Advanced Topographic Laser Altimeter
System (ATLAS) photon-counting instrument, utilizes a green laser
(532 nm) to collect Earth elevation data. At each overpass, this laser
surveys with three pairs of beams spaced 3.3 km apart, where each
pair contains a strong and a weak beam spaced 90 m apart, resulting
in six beams in total. The strong and weak beams differ in transmit
energies with an approximate ratio of 4:1. With a footprint width of
approximately 6.6 km across track, ICESat-2 releases 10,000 pulses per
second, ideally providing a ground-based measurement every 70 cm on
the strong tracks and 280 cm on the weak tracks (National Snow and
Ice Data Center, 2024).

As a non-traditional dataset, ICESat-2 presents unique challenges.
Unlike conventional LiDAR systems, its photon-counting approach gen-
erates high levels of noise, requiring significant filtering to distinguish
true seafloor returns from noise photons. Additionally, the narrow
footprint and widely spaced tracks limit its spatial coverage, preventing
ICESat-2 from achieving global coverage. To mitigate these limitations
and strengthen the signal in our study, the strong and weak tracks
within each beam pair were combined.

The spatial coverage of the study area, shown in Fig. 2, is approx-
imately 20 km x 11 km in area, with temporal coverage from 2019 to
2022. Twenty-three distinct ICESat-2 tracks from eight different dates
in total were used in the study. The processing steps undertaken to
extract bathymetry from ICESat-2 tracks are further discussed, with an
example of a processed track shown in Fig. 4.

This study uses ICESat-2’s data product ATLO3, Global Geolocated
Photons (Neumann et al., 2023), which were retrieved from the Na-
tional Snow and Ice Data Center (NSIDC). The NSIDC provides a user’s
guide, algorithm theoretical basis document, and data dictionary for
ATLO3 (Neumann et al., 2023). ATLO3 uses lower-level products to
geolocate returned photon events in X, Y, and Z directions and to
classify their heights. These classifications include a photon quality
flag and a photon signal confidence flag. The quality flag (quality
ph) classifies data as nominal, possible after-pulse, possible impulse
response, or possible transmitter echo pulse (TEP). The photon signal
confidence flag (signal conf ph) classifies each photon based on the
likelihood that it is a true signal (not noise) for different surface types
(i.e., land, ocean, sea ice, land ice, and inland water). Each photon
is assigned a confidence value indicating noise (0), background (1),
low confidence (2), medium confidence (3), or high confidence (4) for
each surface type (Neumann et al., 2023). While this flag helps reduce
data volumes for higher-level ICESat-2 products, it also serves as a
signal-confidence rating that we leveraged for noise filtering.
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Fig. 1. Satellite image of Heron Island, AU and the surrounding reefs: Wistari and Heron Reef. Map lines delineate study area and do not necessarily depict accepted national

boundaries.

ICESat-2 Track Coverage over Heron Island

0 2.5 5km

ICESat-2 Tracks Legend

® 2022-09-30 gt3l gt3r
® 2022-09-30 gt2l gt2r
® 2022-09-30 gtil gtir
e 2021-10-02 gt3l gt3r
e 2021-10-02 gt2l gt2r
e 2021-10-02 gtll gtir
2020-10-04 gt3l gt3r
2020-10-04 gt2l gt2r
2020-10-04 gt1l gtir
2020-07-05 gt3l gt3r
2020-07-05 gt2l gt2r
2020-07-05 gt1l gtir
2020-04-05 gt3l gt3r
2020-04-05 gt2l gt2r
2020-04-05 gt1l gtir
2020-01-05 gt3l gt3r
2020-01-05 gt2l gt2r
2020-01-05 gt1l gtir
2019-10-07 gt2l gt2r
2019-10-07 gtll gtir
2019-04-08 gt3l gt3r
2019-04-08 gt2l gt2r
2019-04-08 gt1l gtir

Fig. 2. All usable ICESat-2 tracks located within the study area. Each track is labeled with the date (year-month-day) the data were acquired and the specific subtracks it includes

(ex. gtll gtlr).

2.2.1. Roselfsema photoquadrats

Roelfsema et al. (2018) provides a dataset of underwater benthic
photos taken in a 2017 photo-transect survey of the Great Barrier Reef,
including Heron Reef. These photos are captured orthogonal to the
seafloor, positioned 0.5 m above 1 m x 1 m photoquadrats placed along
the benthos, while a GPS records the location of the center of each
photo. This dataset will be further discussed for its use as ground-
truth data in the validation of different geomorphic structures and
algorithmically extracted rugosity values from ICESat-2 data.

2.2.2. Allen Coral Atlas

The Allen Coral Atlas (ACA) was created by Arizona State Uni-
versity as a coral conservation tool, using high-resolution imagery
from Planet’s PlanetScope satellites to map coral reefs around the
world (Lyons et al.,, 2022). Combining remote sensing data, in situ
data, and existing coral classifications, the ACA developed reef cover
(geomorphic zones) and benthic cover classes. These classifications
rely on physical attributes of the data, such as depth, slope, exposure,
color, texture, and spatial relationships (Kennedy et al., 2021). This
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Fig. 3. Project workflow for data processing and data preparations for analysis.

dataset will be further discussed for its use in creating a ground-truth
dataset. Also available from the ACA are satellite-derived bathymetry
(SDB) values, derived from a composite spectral image created with
Sentinel-2, Landsat-8, and Planet Dove images (Lyons et al., 2022).

2.3. Methodology

2.3.1. Workflow

The workflow for data processing and methods is found in Fig. 3;
a more detailed description follows. The inputs to this workflow are
ICESat-2’s ATLO3 geolocated photon returns for the tracks shown in
Fig. 2, and the ACA’s benthic classes shapefiles and SDB/depth geotif
file. Additionally, the Roselfsema et al. photoquadrats (Roelfsema et al.,
2018) are used as reference data. Two different modeling methods
(binary logistic regression and convolutional neural network) were
used to classify sections of ICESat-2 tracks as ‘coral’ or ‘not coral’. In this
context, ‘coral’ indicates that the window contains coral reef features.
The following sections will elaborate on each stage of the workflow.

2.3.2. Data preprocessing and filtering

The data preprocessing algorithm combines the strong and weak
ICESat-2 tracks, applies a refraction correction (Parrish et al., 2019),
converts longitude and latitude coordinates to UTM Easting and Nor-
thing (X and Y) coordinates, converts ellipsoidal depths to orthometric
depths, and converts the data into easily processable csv files. These
steps were taken to deal with the sub-surface nature of coral reefs and
the noise inherent in ICESat-2 data.

Next, the data were run through a series of steps that algorithmically
identifies bathymetric photon events. Initially, a histogram was created
for the distribution of depth values for each ICESat-2 track. ICESat-2
tracks are considered to be a straight line; thus, we utilized the UTM
Northing coordinate to represent the along-track direction and assumed
the UTM Easting coordinate does not differ substantially. The number
of histogram bins was set to one-fourth of the number of photon events
in the current track. The depth of the ocean surface was identified
by selecting the depth (histogram bin) with the highest density of
points. All points along the ocean surface or above were removed.
Concurrently, the laser’s extinction point — i.e., the depth of the ocean
beyond which LiDAR will not penetrate — was determined by analyzing
the deepest reliable depth recorded from data categorized as a signal
with high or medium confidence and nominal quality.

Following the removal of surface and excessively deep points, any
remaining noise was filtered out using confidence and quality flags
from ICESat-2. Photons classified as nominal by the quality flag (most
likely to not be noise) and that had a medium or high confidence
flag for any surface type (i.e., ocean, sea ice, etc.) were retained as
bathymetry. Post-filtering, any retained bathymetric points were con-
sidered to be the surface of the seafloor. Additionally, tracks containing
fewer than 20 bathymetric points along the entire track post-filtering
were excluded from further analysis (See Fig. 4 for an example of the
results of these filtering procedures).

2.3.3. Pseudo-rugosity and slope: Parameter extraction from ICESat-2 data
2.3.3.1. Pseudo-rugosity.

Following the creation of files containing algorithmically extracted
seafloor points, the focus shifted to extracting additional seafloor fea-
tures that may indicate the presence/absence of coral reef. It is well
accepted in the benthic ecology community that rugosity serves as a
proxy for the presence and frequency of coral reefs (i.e., low rugosity
typically indicates fewer scleractinian corals, while high rugosity sug-
gests a greater abundance) and the presence of coral reefs. Similarly,
slope has been widely recognized as a key indicator for identify-
ing geomorphic zones (as defined by the ACA), as it reflects the
structural characteristics of the reef. In this study, we extracted a
measure of slope and rugosity, which we refer to as “pseudo-rugosity”,
from the points denoting the surface of the seafloor. Our windows-
based “pseudo-rugosity” algorithm is inspired by the “chain-and-tape”
method commonly used in situ to describe the complexity of a coral
reef surface. The method calculates a ratio (R) based on the length of
a chain draped over the seafloor profile (L) compared to the distance
covered when the chain is fully extended (D) (Walbridge et al., 2018)
(Fig. 5)

L
R= D 1

First, each ICESat-2 track was segmented into non-overlapping 20
m windows (i.e., subsections); unless otherwise stated, the term “win-
dow” is adopted throughout. To reduce any possible remaining noise
from the data, each window was further segmented into 0.5 m sub-
windows, for which the minimum and median depth (Z, in meters)
values were calculated. The median depth was likely to provide a more
representative measure of the depth within each 0.5 m sub-window,
while the minimum depth values were least likely to be noisy. During
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(a) Unfiltered ICESat-2 track.
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(b) Filtered ICESat-2 track, with seafloor extracted.

Fig. 4. Example of an ICESat-2 track pre and post filtering. (a) depicts an unfiltered track. (b) depicts a filtered track where a best algorithmic estimate of the seafloor remains.

Fig. 5. A graphic of the windows-based pseudo-rugosity algorithm based on the “chain-
and-tape” method used to collect in situ data. Imagining the yellow dots represent
ICESat-2 points, L is constructed using the distance between each neighboring point.
D is calculated by taking the length of the window. Rugosity is equal to the ratio of
L to D. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

the development of this methodology, the significance of each value in
coral reef detection was uncertain, so both were retained. The median
depth was used for subsequent pseudo-rugosity calculations. This ap-
proach reduced redundancy in geographically overlapping data points
and minimized overall data volume, possibly resulting from combining
strong and weak tracks. A pseudo-rugosity value was calculated for
each 20 m window, and the leading edge of each 20 m window was
saved as the location of that window. The distance I between two
adjacent ICESat-2 points within a 20 m window (L) was calculated
using the Euclidean distance formula (Weisstein, 2024a):

L=\ -0 P+ -22 @

where Y is the UTM Northing coordinate and Z is the depth value. L
is the sum of all I within the window. For a window containing N
points, there are N — 1 estimated chain lengths, denoted as L. L is then
divided by 20 m (D; the length of the window), which then produces
a rugosity value for that window. We assumed minimal deviation in
the UTM Easting direction, as ICESat-2 tracks are considered to be a
straight line.

Given the nature of ICESat-2 data, where not every 20 m window
of each track contained bathymetric points, the pseudo-rugosity al-
gorithm considered multiple scenarios to ensure comprehensive data
were captured across window boundaries. If a window contained no
bathymetric points, it was assigned an error value of 999 and omitted
from further analysis. If a window contained only one point, a rugosity
value was not calculated, but that point does contribute to the rugosity
calculation of adjacent windows. Windows with two or more points
had their rugosity value partially constructed from points within the
window, and additional values were computed using adjacent windows.
Special cases were considered for windows at the beginning, end, or
middle of a track, and detailed procedures for handling these scenarios
are described in Appendix A.

The rationale behind assigning error values and omitting windows
without bathymetric points was to maintain the integrity of the analysis
by filtering out noise or incomplete data. Given that ICESat-2 data
can be sparse in certain regions due to environmental or instrumental
factors, a method was necessary to ensure that the points contributing
to the rugosity calculation accurately reflected the underlying seafloor.
The decision to incorporate points from adjacent windows for the
calculation in windows with two or more points helps to capture the
local variability on the seafloor, ensuring that all available data are
utilized effectively. This approach minimizes the impact of sparse or
incomplete information, while also utilizing as much of the data as
possible, leading to more accurate and comprehensive analysis.

2.3.3.2. Slope.

Slope was extracted from ICESat-2 data using the parameter extrac-
tion algorithm. The goal of this slope measurement was not to produce
a “true” slope value, but instead to measure something we anticipate is
indicative of reef presence. The slope algorithm employed followed the
same 20 m window and scenario-based structure as the pseudo-rugosity
algorithm. Slope was calculated between each neighboring ICESat-2
point within a window using the formula (Weisstein, 2024b) (Fig. 6):
s= 275 3)

V2= 0N
where Y is the UTM Northing coordinate and Z is the depth value. The
slope equation used is well-suited for ICESat-2 data because it operates
on point-based measurements of elevation and spatial coordinates,
aligning with the satellite’s along-track sampling structure and ensuring
accurate steepness estimation over small spatial scales.

The resulting slope value per window was the average of the ab-
solute value of all slopes calculated within that window. We assigned
an error value of 999 to any window with 0 or 1 point and removed
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Fig. 6. A graphic of the slope calculation. Imagining the yellow dots represent ICESat-2
points, the slope between two points is calculated by dividing the change in elevation
(the rise) over the change in distance (the run). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

these windows from our dataset. Additionally, slope values of higher
than 300% were discarded as erroneous. The output of the parameter
extraction algorithm was a data file containing coordinates, rugosity,
slope and averaged depth values for each 20 m window of each ICESat-
2 track, and were used as inputs to the machine learning models. We
note that the 20 m window data structure created in these algorithms
will be maintained moving forward.

2.3.4. Ground-truth dataset

A ground-truth dataset is essential for the verification of any ma-
chine learning algorithm. Our model aims to classify each distinct 20 m
ICESat-2 window as containing coral reef or not. This was facilitated by
utilizing QGIS (a free and open source GIS software (QGIS Development
Team, 2024)) that allows for easy manipulation and visualization of
remote sensing data.

The QGIS workflow began by loading the processed ICESat-2 data,
as well as the ACA’s benthic classes shapefiles and bathymetry geotif
file. The goal was to construct a ground-truth dataset that mirrors the
spatial structure of ICESat-2 tracks while integrating the ACA’s benthic
class information. The dataset produced by this workflow was then
used for model fitting, where each row represents an individual 20 m
window, labeled with the predicted variable (‘coral’ or ‘not coral’) and
containing predictor variables, such as rugosity, depth, etc. The output
of the parameter extraction algorithm was individual csv files for each
ICESat-2 track reduced to 20 m windows, containing coordinates, SDB,
depth, and extracted parameters of rugosity and slope. The files pro-
duced were first converted into vector shapefile formats and separate
tracks were then combined into a single file. The ACA’s benthic classes
for coral/algae and rock were combined to produce a single shapefile
representing ‘coral’ and ‘not reef.” This merged class taxonomy (Fig. 7)
aligns with traditional ACA reef zones (crest, slope, and flats) and is
likely to be detectable in ICESat-2 data.

To validate the decision to combine ACA classes, we performed a
qualitative examination using photoquadrat data collected by Roelf-
sema et al. (2018). As shown in Fig. 7, areas classified as coral/algae
and rock by the ACA coincided spatially with photoquadrats containing
coral reef. Therefore, we proceeded to use the combined ACA’s rock and
coral shapefiles as ground-truth for our reef classification.

Next, we merged ICESat-2 data with the reef shapefile to generate a
csv file. This csv file contains labels ‘1’ (reef) and ‘0’ (not reef) for each
ICESat-2 window, which were based on spatial overlap with the reef
shapefile. Furthermore, SDB data from the ACA were extracted for the
center of each window. The resulting csv, visualized in Fig. 8, serves as
the foundational dataset for training the machine learning models.
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2.3.5. Surface generation from ICESat-2 data for testing

The ICESat-2 tracks for Heron and Wistari reefs do not provide
complete coverage for the entire area (Fig. 2). Though the traditional
approach for building machine learning models would be to split
the ICESat-2 tracks and their associated ‘coral’/‘not coral’ classes into
testing and training sets, this method does not provide any insight into
the model’s performance across the entire study site. To validate the
model over the entire study site, including areas not covered by ICESat-
2 tracks, we used Voronoi polygons (also known as Thiessen polygons).
These polygons were constructed using the center points of each 20 m
window to estimate input parameters derived from ICESat-2 data, such
as depth, slope, and rugosity. These polygons define areas of influence
around each sample point, ensuring all points within a polygon are
closer to its corresponding sample point than to any other (Yamada,
2016). Fig. 9 illustrates a graphical representation of Voronoi polygon
construction across the entire study area.

By dividing the study area into Voronoi polygons using ICESat-2
data as sample points, we assigned specific attribute values, including
rugosity, slope, and minimum and median depth to each polygon.
Coordinates for the center of each polygon (UTM Easting and Northing)
and SDB were obtained using QGIS and the ACA’s SDB bathymetry
file. Ground-truth labels of ‘coral’ or ‘not coral’ for this dataset were
obtained utilizing the ACA’s benthic class shapefiles. The resulting
surface, composed of Voronoi polygons labeled as ‘coral’ or ‘not coral’,
was used for testing the machine learning models. This process did not
produce a smooth surface; instead, each polygon represents a window
with a single value, reflecting the discrete nature of the data and the
lack of spatial auto-correlation in coral locations throughout the lagoon.

2.3.6. Machine learning models

To achieve the best possible accuracy in identifying coral reefs
along ICESat-2 tracks, we employed two different modeling methodolo-
gies: binary logistic regression (BLR) and convolutional neural network
(CNN), both implemented in Python. The BLR serves to model general
trends and relationships within the data, offering a straightforward
and interpretable baseline for understanding the broader patterns of
coral reef presence. In contrast, the CNN algorithm is designed to
exploit finer details or “micro trends” in the dataset, which may lead
to improved classification performance. A simple CNN architecture
was selected over hybrid or more complex models due to its bal-
ance of performance, computational efficiency, and interpretability.
This simplicity ensures the model is efficient and robust while avoid-
ing unnecessary overhead, making it particularly well-suited for this
application.

The variables used to train and test both models were rugosity,
slope, the UTM Easting (X) and Northing (Y) coordinates of the initial
edge of each window, the minimum and median depth values of ICESat-
2 photon events algorithmically identified as bathymetry for a given
window, and the ACA’s SDB. Analysis indicated that all variables were
statistically significant with a p-value of less than 0.0001. Both models
were trained on all available windows for ICESat-2 tracks, while testing
was conducted on labeled parameters extracted from the generated
Voronoi polygon surface.

Due to the positioning of ICESat-2 tracks over this reef, there exists
an inherent imbalance in the training data, with approximately 1 track
containing coral for every 9 tracks that do not. This imbalance posed
a risk of the models disproportionately favoring the majority class
(‘not coral’) during training. To address this imbalance and minimize
potential overfitting, several precautionary steps were implemented for
both models. First, models were fit with balanced class weights to
adjust for the disproportionate representation of classes in the data.
Balancing the data adjusts the weights for each class based on the
frequencies of each class in the data. For example, the weights for class
1 are calculated as:
w= N

(n-o

4
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Comparison of Allen Coral Atlas’s Benthic Classes with Roelfsema’s Photoquadrats

Y Benthic Classes
Coral/Algae
Rock
Rock Photoquadrat Example

Coral Photoquadrat Example

Georeferenced benthic photoquadrats
(Roelfsema et al., 2018)
s T

Fig. 7. Visualization of the ACA’s benthic classes with Roelfsema et al.’s photoquadrat images (Roelfsema et al., 2018). The blue indicates the coral/algae benthic class, while the
green indicates the rock benthic class. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Visualization of Ground-Truth Dataset

Legend

Reef Classification
® 0: No reef
e 1:Reef

[ Reef Shapefile

Rugosity Window Window Window Window Reef? Bathy | MinZ Med Z Slope
LeftX LeftY Right X Right Y
Associated csv File [, 383676.64 | 7402040.86 | 383678.46 | 7402060.86 | 1 6 0.9847 | -0.7599 | 15.01
1.003 383738.31 | 7402040.86 | 383740.12 | 7402060.86 | 0 2 0.8254 | -0.4080 | 10.84
1.001 38374012 | 7402040.86 | 383741.94 | 7402060.86 | 0 10 0.4749 | -0.3354 | 12.61

Fig. 8. Visualization of ground-truth dataset created in QGIS, where each point indicates a 20 m ICESat-2 window. The green dots indicate no reef presence and the purple dots
indicate reef presence. An example of an associated csv file can be found at the bottom of the figure, where each row represents a point in the map. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)



G.A. Trudeau et al.

Voronoi Polygons

Voronoi vertex

O

Voronoi edge

Fig. 9. Graphical depiction of Voronoi polygons, illustrating how each polygon is
constructed around sample points, with boundaries equidistant between neighboring
sample points.

where w is the weight assigned to class 1, N is the total number
of samples, n is the number of classes, and ¢ is the number of class
1 samples in the data (Pedregosa et al., 2023b). Second, all input
variables were standardized, allowing us to compare data with different
scales by scaling to unit variance. Standardized data were calculated as:

) )
[

where z is the standardized data, x is the sample value, u is the mean
of the data and o is the standard deviation of the data (Pedregosa et al.,
2023a). Finally, L2 (i.e., ridge regression) penalties were added to both
models to mitigate overfitting. Together, these steps ensured that the
models accounted for the imbalanced nature of the data and maintained
robust performance across all classes.

Binary logistic regression (BLR) models classify data using the
logistic sigmoid function, which constrains the output to a range
between 0 and 1. The BLR employed here aims to classify ICESat-
2 data by estimating the probability that a given window contains
coral. This was done using the standard logistic regression model from
sklearn.learn_model, with the L-BFGS solver. The L-BFGS solver is a
quasi-Newton optimization method that uses a limited-memory version
of the Broyden-Fletcher-Goldfarb—Shanno (BFGS) algorithm (Encyclo-
pedia of Mathematics, 2024). L-BFGS is particularly well-suited for
large-scale problems because it reduces memory usage by approximat-
ing the Hessian matrix using only a few vectors. The maximum number
of iterations was set to 10000 to ensure convergence. Hyperparameters
of the model, such as the solver method and tolerance, were fine-
tuned using a grid search technique to enhance model performance and
achieve the best classification results.

Convolutional neural networks (CNN) use a combination of con-
volutional layers, pooling layers, and dense layers in order to make
predictions using data with a grid-like topology (Goodfellow et al.,
2016). Initially, a CNN learns and extracts features through convolution
and max pooling. The final classification was performed using fully
connected layers. The CNN'’s structure was designed to identify patterns
in the data that indicate the presence of coral reefs. For a detailed
understanding of CNNs, refer to Goodfellow et al. (2016), Madhavan
(2021).

After exploring alternatives, including 2-D convolutions with ob-
servation stacking, we found that a 1-D convolutional structure was
most effective for analyzing the linear and time-series-like ICESat-2
data. This architecture aligns with the sequential nature of ICESat-2
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Fig. 10. Architecture of 1-D CNN.

tracks, where observations are ordered spatially along the satellite’s
path, making 1-D convolutions ideal for capturing local spatial patterns
without unnecessary complexity. The CNN architecture, depicted in Fig.
10, contains two sets of convolutional and max pooling layers, followed
by a flattening layer and a fully connected activation layer. The first
layer of the model was a convolutional layer with 22 nodes, a (5 x 1)
window, and ReLU activation. The second layer was a (2 x 1) max
pooling layer. The third layer was another convolutional layer with 44
nodes, a (3 x 1) window, and ReLU activation. The fourth layer was a
(2 x 1) max pooling layer. The fifth layer was a flattening layer, which
takes our data from (7 x 1 x44) to (308 x 1). The final layer was a dense
layer with ReLU activation that produced a binary classification output.

The CNN was implemented using the sequential model from tensor-
flow.keras and utilizes the adam optimization solver, which combines
the benefits of the stochastic gradient descent method with adaptive
learning rates to improve convergence efficiency (Keras, 2023). To
mitigate overfitting, early stopping with a patience of 50 epochs was
employed to minimize loss and ensure that training stopped when the
validation loss ceased improving. L2 regularization was strategically
applied to the convolutional layer that exhibited greater influence
within the model, helping to constrain the weights and reduce overfit-
ting. Additionally, hyperparameters of the model, such as the learning
rate, batch size, and number of nodes, were fine-tuned using a grid
search technique to optimize performance and achieve the best results
possible.

2.3.7. Feature importance analysis

Identifying the most important features in ML algorithms is crucial
for understanding which variables influence the model’s ability to
detect coral reefs. For the BLR models, feature importance was defined
by comparing the absolute value of the standardized scores for each
variable. Standardized scores are calculated by subtracting the expected
value according to the null hypothesis (typically zero) from the BLR
regression coefficients, and then dividing by their associated standard
errors. Neural networks are often described as “black boxes” because,



G.A. Trudeau et al.

Histogram of Pseudo-Rugosity Values
4000 T . , .

3500 3

33rd Percentile:
3000 [ 1.01 1

2500 b

66th Percentile:
1.45 1

2000

Frequency

1500

1000

500

3 4 5 6
Pseudo-Rugosity

Fig. 11. Histogram of the distribution of pseudo-rugosity values. Values below the
33rd percentile are classified as low rugosity, values above the 66th percentile are
classified as high rugosity, and values between the two thresholds are classified as
medium rugosity.

although we know how they work, we are often unable to explain
the patterns they extract from the data in order to make classifica-
tions. However, one way to determine the most important predictor
variables is by measuring the permutation feature importance, which
evaluates how the model’s prediction error changes when each fea-
ture is permuted. For predictor error, we analyzed the changes in F1
score in relation to different combinations of features. Pseudo-code for
this approach, provided by Molnar (Molnar, 2022), can be found in
Appendix B.

3. Results
3.1. Parameter extraction results

The parameter extraction algorithm produced additional metrics
from ICESat-2 data; namely, pseudo-rugosity and slope. These values
provided insight into the variability of the seafloor’s complexity across
the study area. The following sections present the results of these
metrics in both geographic and statistical contexts.

3.1.1. Pseudo-rugosity

Rugosity values were categorized into high, medium, and low
groups for visualization, as shown in Fig. 11. Thresholds for these
categories were determined using the 33rd and 66th percentiles of
the rugosity distribution, identified through a histogram. Values below
or equal to the 33rd percentile were classified as low, those between
the 33rd and 66th percentiles as medium, and those above the 66th
percentile as high. This approach ensures that the categories reflect the
relative distribution of rugosity values, making it easier to compare and
interpret them.

The results of the pseudo-rugosity algorithm displayed geographi-
cally are shown in Fig. 12.

Referencing 20 different photoquadrats from Roelfsema et al. (2018)
that intersect with ICESat-2 tracks and are located along similar ge-
omorphic structures, we were able to qualitatively verify that the
pseudo-rugosity values are related to the geomorphology they describe.
See Fig. 13 for examples of high, medium, and low rugosity classifica-
tions, the associated photoquadrat, and their location around Heron
Reef. The photoquadrats associated with low rugosity were mostly
sand, whereas those associated with high rugosity contained a variety
of corals. Medium rugosity photoquadrats contained a mix of sand and
corals or contained table/brush corals, such as Acropora spp.
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3.1.2. Slope

Similarly to the pseudo-rugosity values, slope values were cate-
gorized into high, medium, and low groups for visualization. Fig.
14 shows the distribution of slope values. The thresholds for these
categories were determined using the 33rd and 66th percentiles of the
distribution, consistent with the approach used for rugosity.

The results of the slope algorithm displayed geographically are
shown in Fig. 15.

Similar to the verification process for the pseudo-rugosity values,
we used 20 different photoquadrats from Roelfsema et al. (2018)
that intersect with ICESat-2 tracks to qualitatively verify that the
slope values are related to the geomorphology they describe. See
Fig. 16 for examples of high, medium, and low slope classifications,
the associated photoquadrat, and their location around Heron Reef.
The photoquadrats associated with low slope values were mostly flat
sand areas or areas containing table/brush corals. In contrast, those
associated with high slope values corresponded to steeper geomorphic
features such as reef slopes. Medium slope photoquadrats contained
mixtures of gently sloping coral structures, such as those located along
the reef crest.

3.2. Model performance

The results of the machine learning models’ ‘coral’/‘not coral’ clas-
sification were summarized using metrics derived from the models’
ability to predict ‘coral,” including global accuracy, recall, F1 scores,
false positive rate (FPR), and confusion matrices. Fig. 17 compares the
performance of the BLR and CNN models in their ability to identify
coral presence. The CNN demonstrated superior performance across
multiple metrics. The BLR achieved a relatively high recall for coral
predictions (92.9%), indicating effective identification of positive in-
stances of coral reefs. However, this came at the cost of a high FPR for
coral predictions (25.7%), meaning it frequently misclassified non-reef
areas as coral. This tendency to overestimate coral presence introduces
a bias in the BLR model, as seen in the F1 score (43%), potentially
leading to an overestimation of coral reef coverage. In contrast, the
CNN outperformed the BLR in terms of accuracy (85.4%) and FPR
(13.1%) and produced a comparable F1 score to the BLR (49%). This
demonstrates a more balanced performance in accurately predicting
coral presence, thereby reducing the likelihood of overestimating coral
coverage.

In addition to evaluating the models’ ability to predict coral pres-
ence, it is important to assess how well they identify ‘not coral’ areas.
The F1 score was chosen to provide a comprehensive measure of model
performance, as it balances recall and precision. Major data imbalances,
where one class (such as ‘not coral’ in our case) significantly outweighs
the other, can lead to misleading F1 scores, potentially obscuring
the model’s true performance across both classes. While efforts have
been made to address data imbalances during model development, we
evaluate the F1 scores from both perspectives to gain a more holistic
understanding of the models’ overall performance. The BLR model
achieved an F1 score of 85% for ‘not coral’ predictions, indicating a
balanced performance in identifying non-reef areas with reasonable
precision and recall. In comparison, the CNN outperformed the BLR
with a higher F1 score of 91.5%, demonstrating stronger overall ac-
curacy in distinguishing ‘not coral’ regions. Notably, the CNN’s F1
score for ‘not coral’ predictions (91.5%) was slightly higher than its F1
score for coral predictions (49%), suggesting that the model is slightly
more effective at identifying ‘not coral’ areas than coral regions. These
results highlight the CNN’s superior capability in identifying non-coral
areas, making it a more effective model for this aspect of classification.
Consequently, the CNN is more reliable in distinguishing “true” coral
reef areas from non-reef features, as well as vice-versa, making it a more
robust and balanced model compared to the BLR for this classification
task.
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Results of Pseudo-Rugosity Algorithm
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Fig. 12. Results of the pseudo-rugosity algorithm, categorized into high, medium, and low rugosity.
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Fig. 13. Examples of high, medium, and low rugosity classifications, the associated photoquadrat and their location around Heron Reef. Photoquadrat images, part of a larger
study conducted by Roelfsema et al. (2018) from 2011 to 2017, were collected in 2017. This study involved the collection of photoquadrats across the Great Barrier Reef.

3.3. Feature importance

Our feature importance analysis revealed that SDB was the most
important feature in the BLR model, with rugosity and the UTM Easting
coordinate as the next most important features (See Fig. 18). For the
CNN, the associated features were ranked by changes in F1 score (See
Fig. 19). Similarly to the BLR, SDB was identified as the predominant
predictor. The minimum depth was the next most important, and
rugosity and median depth were the next most important and roughly
the same.

10

To assess how our algorithmically derived features (rugosity and
slope) influence coral reef detection accuracy, we applied the permu-
tation feature importance method to both the BLR and CNN models.
Rather than focusing on which variable caused the greatest change in
accuracy, we examined how much accuracy declined when each feature
was excluded. Excluding rugosity reduced accuracy by 0.87% in the
BLR and 0.01% in the CNN. Similarly, excluding slope resulted in a
decrease of 0.2% in the BLR and 0.007% in the CNN. These results
indicate that the BLR model is significantly more sensitive to changes in
feature inclusion than the CNN. Furthermore, rugosity consistently had
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Fig. 14. Histogram of the distribution of slope values. Values below the 33rd percentile
are classified as low slope, values above the 66th percentile are classified as high slope,
and values between the two thresholds are classified as medium slope.

a greater influence on detection accuracy in both models, highlighting
its critical role in identifying coral reefs.

4. Discussion

These steps toward identifying and delineating coral reef habitats
establish a foundation for a reliable, cost-effective, and economical
alternative for monitoring changes in coral reefs with a high-resolution
and frequency dataset. In general, our results indicate that this method
effectively identifies the presence of coral reefs. The application of
convolutional neural networks (CNNs) offers promising results, sug-
gesting satellite-based methods as a valuable tool for environmental
monitoring. Furthermore, understanding the specific environmental
variables driving coral reef detection enhances our ability to optimize
and refine machine learning models, as well as direct decisions for
data collection. Feature importance analyses identified SDB as the most
important predictor in both models. If SDB is not readily available, a
surrogate measurement may be needed. Rugosity, UTM coordinates,
and depth variables also contributed substantially to the predictive
capabilities of the models, underscoring their relevance in coral reef
detection. While our rugosity and slope metrics were related to the
geomorphology they describe, only rugosity proved to be an essential
contributor to our models. The findings of this study suggest several
practical implications for coral reef conservation and management,
particularly in the context of remote sensing and machine learning.

The pseudo-rugosity and slope metrics developed in this study offer
a proxy for coral reef presence. The use of ICESat-2 data, combined
with the “chain-and-tape” inspired rugosity method and slope calcu-
lation, provided an innovative approach to remotely sensing benthic
environments and effectively captured the complexity of the seafloor.
Rugosity proved especially valuable for distinguishing coral reefs from
smoother, non-reef areas, as indicated by its significant influence on
model performance. Excluding rugosity caused noticeable declines in
detection accuracy in both models, underscoring its critical role in
coral reef detection. Similarly, slope contributed to detection accuracy,
although its impact was less pronounced. These findings emphasize
the importance of geomorphological features in refining coral reef
detection models. Future research could integrate additional environ-
mental variables and quantitative ground-truth data to improve model
accuracy. Nonetheless, this study demonstrated the effectiveness of
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combining these metrics derived from ICESat-2 data for coral reef
detection and established a foundation for its use in monitoring efforts.

The accuracy of our models’ ability to identify coral reef presence
directly impacts our estimation of coral reef extent, which is criti-
cal for ecological monitoring and conservation efforts. For instance,
models with high recall but elevated FPRs, such as the BLR model,
risk overestimating coral reef coverage. This misrepresentation can
lead to inefficient resource allocation or misguided conservation efforts
targeting non-reef areas. Conversely, false negatives, where actual coral
reef areas are misclassified as non-coral, hinder conservation by leaving
vulnerable reef areas unprotected. The CNN model, with its lower FPR
and higher overall accuracy, reduces this bias by providing a more
balanced approach that minimizes the risk of overestimation and offers
a more accurate representation of coral extent. While this balanced
approach reduces false positives and negatives, challenges remain in
detecting subtle changes in reef extent, which is especially important
for coral reef monitoring.

Despite the CNN’s superior performance metrics and its potential for
operational use in automated coral reef mapping from satellite data,
limitations persist. These models may struggle to detect smaller or
subtle changes in reef extent, particularly when applied to a monitor-
ing methodology. These smaller changes may fall within the margin
of error associated with the ICESat-2 data and the models, making
it difficult to detect them reliably. Consequently, these methods are
better suited for detecting substantial changes in reef coverage, which
are more likely to be identified and confirmed with high certainty.
Given that coral reefs typically change slowly under natural conditions,
the models may only reliably detect larger changes occurring due to
extreme weather events. Reducing both over- and under-estimations
of coral coverage will improve the chances of detecting more subtle
changes. However, this method’s ability to detect large-scale changes
is advantageous. For example, large-scale bleaching events result in the
degradation of coral reefs and reduced rugosity, which can be identified
by our model. This capability is advantageous for conservation and
management, as it helps prioritize areas most susceptible to climate
change impacts.

Through the use of ICESat-2 data, we illustrate the advantages of
using satellite-based remote sensing for coral reef detection, addressing
some of the limitations inherent in data traditionally used for coral
reef research. ICESat-2 data are advantageous in this research because
they are free to access and download, while traditional data collection
methods are often costly and logistically challenging. The availability of
ICESat-2’s satellite data makes it a valuable resource for ocean-related
research, allowing for wide-scale detection of coral reefs, especially
for those reefs with limited access. Additionally, as more ICESat-2
data becomes available, we anticipate improved results. Specifically,
an increase in data may make this method useful for detecting seasonal
changes in coral reefs. This research contributes to the growing body
of knowledge on the use of ICESat-2 data for ocean-related purposes
and highlights the potential for further innovation in remote sensing
techniques for environmental monitoring.

While the use of ICESat-2 data and CNN models presents numerous
benefits, there are limitations that must be acknowledged. This study
focused primarily on a specific geographic region and reef type; Heron
Island and its atoll reefs. These reefs are characterized by well-defined
reef flats, clear lagoonal waters, and relatively straightforward bathy-
metric features, which provide an optimal test bed for methodology
development. Thus, it is important to note that the results of this study
may not be perfectly transferable to non-lagoonal coral reefs. Reefs
that lack the clear, abrupt transition from reef to non-reef may present
challenges for the model. In these systems, the less defined boundary
between the reef and non-reef areas could complicate the detection of
features like rugosity. The model may experience reduced accuracy in
such environments, where gradual transitions lead to less pronounced
differences in physical characteristics. Additionally, variables critical to
this model, such as SDB, may behave differently in ecosystems with
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Results of Slope Algorithm
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Fig. 15. Results of the slope algorithm, categorized into high, medium, and low slope values.
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Fig. 16. Examples of high, medium, and low slope classifications, the associated photoquadrat and their location around Heron Reef. Photoquadrat images, part of a larger study
conducted by Roelfsema et al. (2018) from 2011 to 2017, were collected in 2017. This study involved the collection of photoquadrats across the Great Barrier Reef.

unique physical and biological properties, requiring adjustments to the
algorithm or the incorporation of new inputs. Despite these challenges,
the methodology developed here lays a strong foundation for testing
its scalability to other reef ecosystems and potentially broader marine
environments. A natural next step in this research will be to extend
the analysis to other diverse reef ecosystems to test the robustness
and generalizability of our findings. Expanding the scope to include
more varied reef types will provide insight into the limitations and
adaptability of ICESat-2 data and machine learning models for global
coral reef monitoring.
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5. Conclusions

In conclusion, the integration of machine learning models with
ICESat-2 remote sensing data offers a promising approach for advancing
coral reef research and management. This study demonstrates the po-
tential of combining seafloor complexity metrics, such as rugosity and
slope, with machine learning to improve coral reef detection. Future
research directions should prioritize continued exploration and refine-
ment of machine learning algorithms, as well as the incorporation of
additional environmental variables to enhance model accuracy. While
the integration of rugosity and slope metrics provides key indicators
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Metric Comparison for BLR and CNN Models
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Fig. 17. Evaluative metrics for distinguishing ‘coral’ from ‘not coral’ for each machine
learning model tested.
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Fig. 18. Relative feature importance for the BLR model.
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Fig. 19. Relative feature importance for the CNN using F1 score.

of seafloor complexity, these methods remain constrained by data
availability and the challenges of validating results in remote coral reef
environments. Addressing these challenges will require further in situ
validation and an assessment of how well these approaches generalize
across diverse reef ecosystems. The findings presented here not only
advance the field of coral reef detection but also provide a foundation
for future research aimed at utilizing ICESat-2 and similar datasets for
broader environmental applications. By identifying areas of ecological
importance and vulnerability, these methods empower policymakers
and resource managers to allocate conservation efforts and funding
more effectively. Furthermore, the ability to monitor reef conditions at
large spatial scales supports adaptive management strategies, ensuring
long-term assessment and response to environmental changes such as
coral bleaching, coastal development, and climate-induced shifts in reef
ecosystems. By harnessing advanced algorithms to enhance ecological
research, particularly in spatial ecology, this study contributes to a

Ecological Informatics 87 (2025) 103099

more comprehensive understanding of coral reefs and supports their
protection in the face of ongoing environmental challenges.
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Appendix A. Pseudo-rugosity algorithm pseudo code

We detail the specific scenarios for the two or more points case
below:
If the current window is...

1. the first window of a track:

(a) Calculate the distance between every point in the current
window: L,,,.

(b) Utilize the next window’s first point to calculate the dis-
tance to the boundary of the window along the path from
the current window’s last point to the next window’s first
point: L,,.,. If there are no points in the next window,
L,ex is calculated using the same depth as the current
window’s last point.

(c) Sum all distances: L= Y L,, + L

next

2. the last window of the track:

(a) Calculate the distance between every point in the current
window: L,

(b) Utilize the previous window’s last point to calculate the
distance to the boundary of the window along the path
from the current window’s first point to the previous
window’s last point: ip,eu. If there are no points in the
previous window, L prev 18 calculated using the same depth
as the current window’s first point.

() Sum all distances: L =Y L;, + L.,

3. neither the first or last window of the track:

(a) Calculate the distance between every point in the current
window: L,,.
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(b) Utilize the previous window’s last point to calculate the
distance to the boundary of the window along the path
from the current window’s first point to the previous
window’s last point: L,,,. If there are no points in the
previous window, L prev 18 Calculated using the same depth
as the current window’s first point.

Utilize the next window’s first point to calculate the dis-
tance to the boundary of the window along the path from
the current window’s last point to the next window’s first
point: L,,.,. If there are no points in the next window,
L,y is calculated using the same depth as the current
window’s last point.

(d) Sum all distances: L =Y L,, + L0, + Los

(c

—

L is then divided by 20 m (the length of the window) to derive
the resulting pseudo-rugosity value for that window. Considering all
possible scenarios ensures comprehensive data captured across window
boundaries.

Appendix B. Permutation feature importance algorithm

Algorithm 1 Permutation Feature Importance Algorithm (Molnar,
2022)
Require: Trained model f, feature matrix X, target vector y, error

measure L(y, /) (ie. accuracy, fl-score, etc.).
1: Estimate the original model error: e,,;, = L(y, Fx)

2: for each feature j € {1, ...,p}, do

3 Generate feature matrix X ,,,,, by permuting feature j in the data
X.

4: Estimate error e,,.,, = L(y, fx serm)) ON predictions of the
permuted data.

5: Calculate permutation feature importance as difference: FI; =
€perm ~ Corig

6: Sort feature by descending F1I.

Data availability

ICESat-2 data is available for download from https://nsidc.org/
data/icesat-2/data. The Roelfsema photoquadrats can be found at
https://doi.org/10.1594/PANGAEA.894801 and were not modified.
The shapefiles for the Allen Coral Atlas are available for download from
https://allencoralatlas.org/atlas/#12.42/-23.4644,/151.9470.
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