U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Effects of Temperature and Salinity on Perfluorooctane Sulfonate (PFOS) Toxicity in Larval Estuarine Organisms



Details

  • Journal Title:
    Toxics
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Perfluorooctane sulfonate (PFOS) is a persistent contaminant that has been found globally within the environment. Key data gaps exist in the toxicity of PFOS to marine organisms, especially estuarine species that are crucial to the food web: fish, shrimp, and mollusks. This study developed toxicity thresholds for larval estuarine species, including grass shrimp (Palaemon pugio), sheepshead minnows (Cyprinodon variegatus), mysids (Americamysis bahia), and Eastern mud snails (Tritia obsoleta). Multiple abiotic stressors (salinity and temperature) were included as variables in testing the toxicity of PFOS. Acute 96 h toxicity testing under standard test conditions of 25 °C and 20 ppt seawater yielded LC50 values of 0.919 mg/L for C. variegatus, 1.375 mg/L for A. bahia, 1.559 mg/L for T. obsoleta, and 2.011 mg/L for P. pugio. The effects of increased temperature (32 °C) and decreased salinity (10 ppt) varied with test species. PFOS toxicity for the sheepshead minnows increased with temperature but was not altered by decreased salinity. For grass shrimp and mud snails, PFOS toxicity was greater under lower salinity. The combination of higher temperature and lower salinity was observed to lower the toxicity thresholds for all species. These data demonstrate that expanding toxicity testing to include a wider range of parameters will improve the environmental risk assessment of chemical contaminants, especially for species inhabiting dynamic estuarine ecosystems.
  • Source:
    Toxics, 12(4), 267
  • DOI:
  • ISSN:
    2305-6304
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha-512:c6f1bcbdf3195305cafce6cbb238b4307e5c83388f01d0918fbf02c6684802a6b1bbc45b34a921af88c68fb1e11f150814f8e61f2534617d38c24da63b732da8
  • Download URL:
  • File Type:
    Filetype[PDF - 1.68 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.