Turning Night into Day: The Creation and Validation of Synthetic Nighttime Visible Imagery Using the Visible Infrared Imaging Radiometer Suite (VIIRS) Day–Night Band (DNB) and Machine Learning
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Turning Night into Day: The Creation and Validation of Synthetic Nighttime Visible Imagery Using the Visible Infrared Imaging Radiometer Suite (VIIRS) Day–Night Band (DNB) and Machine Learning

Filetype[PDF-36.03 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Artificial Intelligence for the Earth Systems
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Meteorological satellite imagery is a critical asset for observing and forecasting weather phenomena. The Joint Polar Satellite System (JPSS) Visible Infrared Imaging Radiometer Suite (VIIRS) Day–Night Band (DNB) sensor collects measurements from moonlight, airglow, and artificial lights. DNB radiances are then manipulated and scaled with a focus on digital display. DNB imagery performance is tied to the lunar cycle, with the best performance during the full moon and the worst with the new moon. We propose using feed-forward neural network models to transform brightness temperatures and wavelength differences in the infrared spectrum to a pseudo-lunar reflectance value based on lunar reflectance values derived from observed DNB radiances. JPSS NOAA-20 and Suomi National Polar-Orbiting Partnership (SNPP) satellite data over the North Pacific Ocean at night for full moon periods from December 2018 to November 2020 were used to design the models. The pseudo-lunar reflectance values are quantitatively compared to DNB lunar reflectance, providing the first-ever lunar reflectance baseline metrics. The resulting imagery product, Machine Learning Nighttime Visible Imagery (ML-NVI), is qualitatively compared to DNB lunar reflectance and infrared imagery across the lunar cycle. The imagery goal is not only to improve upon the consistent performance of DNB imagery products across the lunar cycle, but ultimately to lay the foundation for transitioning the algorithm to geostationary sensors, making global continuous nighttime imagery possible. ML-NVI demonstrates its ability to provide DNB-derived imagery with consistent contrast and representation of clouds across the full lunar cycle for nighttime cloud detection. Significance Statement This study explores the creation and evaluation of a feed-forward neural network to generate synthetic lunar reflectance values and imagery from VIIRS infrared channels. The model creates lunar reflectance values typical of full moon scenes, enabling quantifiable comparisons for nighttime imagery evaluations. Additionally, it creates imagery that highlights low clouds better than its infrared counterparts. Results indicate the ability to create visually consistent nighttime visible imagery across the full lunar cycle for the improved nighttime detection of low clouds. Wavelengths chosen are available on both polar and geostationary satellite sensors to support the utilization of the algorithm on multiple sensor platforms for improved temporal resolution and greater simultaneous geographic coverage over polar orbiters alone.
  • Source:
    Artificial Intelligence for the Earth Systems, 3(3)
  • DOI:
  • ISSN:
    2769-7525
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1