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ABSTRACT: Meteorological satellite imagery is a critical asset for observing and forecasting weather phenomena. The
Joint Polar Satellite System (JPSS) Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB) sensor
collects measurements from moonlight, airglow, and artificial lights. DNB radiances are then manipulated and scaled with
a focus on digital display. DNB imagery performance is tied to the lunar cycle, with the best performance during the full
moon and the worst with the new moon. We propose using feed-forward neural network models to transform brightness
temperatures and wavelength differences in the infrared spectrum to a pseudo-lunar reflectance value based on lunar re-
flectance values derived from observed DNB radiances. JPSS NOAA-20 and Suomi National Polar-Orbiting Partnership
(SNPP) satellite data over the North Pacific Ocean at night for full moon periods from December 2018 to November 2020
were used to design the models. The pseudo-lunar reflectance values are quantitatively compared to DNB lunar reflec-
tance, providing the first-ever lunar reflectance baseline metrics. The resulting imagery product, Machine Learning Night-
time Visible Imagery (ML-NVI), is qualitatively compared to DNB lunar reflectance and infrared imagery across the lunar
cycle. The imagery goal is not only to improve upon the consistent performance of DNB imagery products across the lunar
cycle, but ultimately to lay the foundation for transitioning the algorithm to geostationary sensors, making global continu-
ous nighttime imagery possible. ML-NVI demonstrates its ability to provide DNB-derived imagery with consistent contrast
and representation of clouds across the full lunar cycle for nighttime cloud detection.

SIGNIFICANCE STATEMENT: This study explores the creation and evaluation of a feed-forward neural network
to generate synthetic lunar reflectance values and imagery from VIIRS infrared channels. The model creates lunar
reflectance values typical of full moon scenes, enabling quantifiable comparisons for nighttime imagery evaluations.
Additionally, it creates imagery that highlights low clouds better than its infrared counterparts. Results indicate the
ability to create visually consistent nighttime visible imagery across the full lunar cycle for the improved nighttime de-
tection of low clouds. Wavelengths chosen are available on both polar and geostationary satellite sensors to support the
utilization of the algorithm on multiple sensor platforms for improved temporal resolution and greater simultaneous
geographic coverage over polar orbiters alone.
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1. Introduction Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB)
sensor captures radiance measurements utilizing lunar illumi-
nation and ambient light sources; however, most DNB-based

imagery quality is tied to the lunar cycle. Furthermore, due to

Since its inception, satellite imagery has proved an invalu-
able resource for operational weather forecasters and atmo-
spheric science researchers and is critical in areas with limited

surface observations such as coastal regions or open oceans.
Forecasters obtain timely and actionable global atmospheric
data for observing and predicting hazardous weather condi-
tions through satellite imagery. Cloud and moisture patterns
of varying size and time scales are particularly beneficial for
making predictions or putting model forecasts into context.
Detecting clouds, especially low clouds, at night is more chal-
lenging than in the daytime due to the absence of visible im-
agery from solar reflectance and because of the low thermal
contrast between the clouds and underlying surface in the in-
frared (IR) spectrum (Ellrod 1995). The Visible Infrared
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the nature of polar orbiters, on which the VIIRS DNB re-
sides, significant lags in revisit time depending on the geo-
graphic location of the area of interest may decrease its use
for some forecasting elements and time scales. More readily
accessible nighttime visible imagery products that are consis-
tent across the lunar cycle can improve forecasters’ situational
awareness of clouds at night, especially outside of the polar
regions.

This paper proposes to use machine learning methods with
IR channels and DNB lunar reflectance values to create
pseudo-lunar reflectance values and associated nighttime im-
agery products, the Machine Learning Nighttime Visible Im-
agery (ML-NVI). Unlike most DNB scaling methods or
previous machine learning methods for nighttime visible im-
agery creation, it creates a synthetic lunar reflectance value
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that can be used for quantitative evaluation against lunar re-
flectance values directly calculated from sensor-measured val-
ues. The values and associated digital imagery created from
ML-NVI are not an exact translation of lunar reflectance as
seen in the DNB for all clouds as it also identifies thin cirrus
which is not captured in traditional DNB lunar reflectance
but provides a similar product that performs better than its IR
counterparts. Unlike in IR where cold cirrus masks lower-
level features, ML-NVI detects, but presents a transparent
appearance of, some upper-level clouds that enable greater
fidelity of lower-level clouds, visually accentuating low-level
cloud features to the user. Created and validated using only
Joint Polar Satellite System (JPSS) VIIRS channels, model in-
put channels were selected to be transferable to channels on
geostationary satellites in order to gain temporal resolution
and increase simultaneous spatial coverage. The model is
trained, validated, and tested using the Miller and Turner (2009)
DNB lunar reflectance as the predictand, permitting both quali-
tative and quantitative nighttime assessments.

The remainder of this paper delves into the development,
validation, testing, and evaluation of the ML-NVI model.
Section 2 provides essential background information on topics
critical to understanding the problem set and development of
the algorithm. Section 3 highlights data selection and process-
ing. Section 4 focuses on model architecture selection and pa-
rameter tuning, resulting in a preferred model scheme. This
scheme is then utilized to create three distinct models based
on different latitude ranges that are then qualitatively and
quantitatively compared with independent datasets for use
with VIIRS in section 5. Section 5 also compares performance
over different lunar reflectance ranges and over the full lunar
cycle for the model of choice. Section 6 provides case studies
for fog and tropical cyclone events that occur outside of the
initial training, testing, and validation regions, as well as
conclusions.

2. Background
a. Infrared cloud detection at night

Visible imagery is especially helpful to forecasters as it
offers the highest spatial resolution and presents clouds in a
way that matches an analyst’s intuition as it is similar to how
clouds are observed by the human eye (Kidder and Vonder
Haar 1995). Visible imagery provides contextual clues on
cloud formations in the way of optical depth and texture. This
makes it one of the “most easily interpreted type of satellite
products (Kidder et al. 2000).” Due to the lack of solar reflec-
tance, with the exception of data from the DNB, there is no
readily available nighttime visible imagery, and in its absence,
forecasters must rely on IR imagery for nighttime cloud de-
tection. Near-surface clouds have similar brightness tempera-
tures (BTs) at IR wavelengths as Earth’s surface beneath
making it difficult to detect these clouds (Ellrod 1995). Physi-
cal temperature inversions make the detection of low clouds
even more challenging (Kidder and Vonder Haar 1995; Liou
2002; Chapman and Gasparovic 2022). At the pixel level,
multispectral techniques prove to be more useful for cloud
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detection over single channels as they account for the property
differences in clouds at different wavelengths (Ellrod 1995).
Differences between wavelengths highlight low-level cloud
features best, and cloud spectral properties can be capitalized
on through the use of BT differences (BTDs) in addition to
BT values when creating new cloud detection products (Calvert
and Pavolonis 2010).

Many previous studies have shown the benefits of using
BTDs or multispectral imagery for cloud property determina-
tion (Prabhakara et al. 1988; Inoue 1989; Strabala et al. 1994;
Ellrod 1995; Anthis and Cracknell 1999; Kidder et al. 2000;
Bendix 2002; Ellrod and Gultepe 2007; Hillger 2008; Calvert
and Pavolonis 2010; Lindsey et al. 2014; Kim and Hong 2019;
Miller et al. 2022). Inoue (1989) demonstrated that combining
single-wavelength temperature thresholds and BTDs leads to
better performance than threshold or multispectral differenc-
ing techniques alone. Later, Strabala et al. (1994) compared
the 8-11-um BTD and the 11-12-um BTD and developed a
tool to determine whether there was cloud present and what
phase cloud it was (helping to indicate cloud height and type)
based on these two values. Low cloud split window (SW) ap-
proaches typically use the 3.9- and 10.7-11.2-um channels
(Ellrod 1995; Bendix 2002; Ellrod and Gultepe 2007; Calvert
and Pavolonis 2010; Miller et al. 2022). This split window
technique capitalizes on the difference in spectral response
functions in the IR as well as the fact that the 3.9 wm is a com-
bination of reflected and emitted radiation. The shortwave
albedo or “fog product” of the 1990s GOES satellites used
the 10.7-3.9-um BTD and revolutionized “fog and liquid water
cloud detection at night” (Kidder et al. 2000). The 10.7-3.9-um
BTD remains one of the most commonly used tests for low
cloud detection at night. Though these methods have greatly
enhanced cloud detection at night, they do not compare to
that of visible imagery, and thus, the Operational Line Scanner
(OLS) and DNB were created to leverage moonlight for feature
detection (Kidder and Vonder Haar 1995; Miller et al. 2006).

b. Lunar illumination

The National Aeronautics and Space Administration (NASA)
has observed the spectral irradiance and radiance of the
moon since 1996, and lunar radiometric models from these
data are used to calibrate onboard sensors of satellites
(Kieffer and Stone 2005). Miller and Turner (2009) published
a dynamic lunar spectral irradiance dataset and model which
expedited calculations of irradiance, making it possible to cal-
culate a lunar reflectance value (between 0 and 1) for all mea-
sured DNB radiances. This enables quantitative studies of the
DNB for conducting comparison calculations similar to those
done with data in the visible spectrum. Min et al. (2017) eval-
uated nighttime reflectance changes from these irradiances
and determined that value differences are less than 0.05% for
water clouds between lunar phase angles. This demonstrated
that a DNB-based nighttime cloud retrieval will have minimal
impacts quantitatively due to the lunar phase, though visually
it may present as vastly different. Replicating these reflec-
tance values at full moon can provide measurements that
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can be further exploited in cloud detection algorithms and
imagery.

Nighttime visible imagery gained significant popularity af-
ter the development of the DNB. The DNB sensor enables ra-
diance collection from 5 to 0.9 um and can capture more
detailed cloud features at night than longwave infrared
(LWIR) (Miller et al. 2013; Min et al. 2017). The DNB sensor
is currently only available on polar orbiters, thus only provid-
ing limited benefits to phenomena that evolve rapidly outside
of the polar regions. It is very sensitive to low levels of light
and uses a three-step gain system to detect radiances over
eight orders of magnitude, utilizing lunar illumination and
even air glow as its light source for nighttime imagery and full
sun for daytime solar illumination (Miller et al. 2013; Liang
et al. 2014; Seaman and Miller 2015; Seaman et al. 2015; Zinke
2017; Line et al. 2018). Normalizing this range for visual pre-
sentation is often challenging, and all DNB radiances must be
scaled postprocessing to create imagery usable by the human
eye (Zinke 2017). Further details on the DNB can be found in
the Algorithm Theoretical Basis Document (ATBD) (Line
et al. 2018) or the User’s Guide (Seaman et al. 2015).

Three DNB scaling algorithms used to view imagery from
measured DNB radiances are near-constant contrast (NCC),
high and NCC (HNCC), and erf-dynamic scaling (EDS)
(Liang et al. 2014; Seaman and Miller 2015; Zinke 2017). The
NCC creates a pseudo-albedo (Liang et al. 2014; Seaman and
Miller 2015), the HNCC creates a normalized radiance value
(Zinke 2017), and the EDS creates a dynamic scaling of the
radiances (Seaman and Miller 2015). These products are en-
hancements to make static images appear to have uniform il-
lumination regardless of the lunar or solar influences on the
viewed scene (Liang et al. 2014; Seaman and Miller 2015;
Zinke 2017; Hoese et al. 2023). In addition to differences be-
tween the products, imagery from the full moon versus a new
moon for the same product will appear vastly different for
similar features, leading to different interpretations of the
same feature as the lunar cycle progresses (Liang et al. 2014;
Seaman and Miller 2015; Zinke 2017; Hoese et al. 2023). Fur-
thermore, in all of these methods, users rely on postprocessed
imagery, which limits them to qualitative validation with vi-
sual inspections or comparisons; depending on the specific
scaling chosen by a user to highlight different features, prod-
ucts like the NCC can appear visually different based on the
maximum and minimum values permitted by the user in the
scaled image (Seaman and Miller 2015; Zinke 2017; Line et al.
2018).

¢. Machine learning for nighttime visible imagery

A number of techniques have been developed in recent
years to create synthetic nighttime “visible” imagery from IR
channels (Chirokova et al. 2023, 2018; Kim and Hong 2019;
Kim et al. 2019, 2020; Mohandoss et al. 2020; Harder et al.
2020). Many of these seek to exploit relationships seen in the
IR wavelengths with daytime visible imagery (Kim and Hong
2019; Kim et al. 2019, 2020; Mohandoss et al. 2020; Harder
et al. 2020). Proxy-visible imagery from the Cooperative Insti-
tute for Research of the Atmosphere (CIRA) uses scaled
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VIIRS DNB radiances as truth and multiple linear regression
to create its imagery. Proxy visible is used operationally by
the National Hurricane Center (NHC) to aid in tropical storm
tracking at night (Chirokova et al. 2023, 2018). Qualitative
evaluation of these models has been predominantly in com-
parison with daytime visible images or nighttime IR (Kim and
Hong 2019; Kim et al. 2019, 2020; Mohandoss et al. 2020;
Harder et al. 2020). Quantitative metrics have been based on
pattern evaluation and structural similarities versus data from
observed measurements.

3. Data
a. Dataset
1) GENERAL

All satellite data used for this research included VIIRS
sensor data records (SDRs) and geolocation data for bands
M13-M16 and the DNB band from the JPSS NOAA-20 and
Suomi National Polar-Orbiting Partnership (SNPP). Lin and
Cao (2019) demonstrated that the relative spectral responses
(RSRs) in the IR spectrum for VIIRS on these satellites are
not identical, differing between 0.18 and 0.06 K. However,
this minimal difference in sensor sensitivities is within docu-
mented performance limits, and thus, data from VIIRS off
both systems were included when creating the training and
validation datasets. Additionally, although there are both
seasonal and latitudinal variations of the standard atmo-
spheric profile causing differing RSRs in the temporal and
spatial regions of study, we chose to accept these differences
as within reasonable limits for data. Both of these assump-
tions allow us to create a model product for use in all seasons
and with both satellites.

2) AREA OF INTEREST

As seen in Fig. 1, the area of interest (AOI) used for the
training and validation datasets, as well as the primary testing
dataset, extends from 0° to 50°N and from 180° to 127°W. This
AQI was chosen to minimize complications from artificial
lights and vegetation differences over land. Equivalent IR
channel BTs in different geographic regions (seasons) may be
tied to significantly different features: in one region (season),
it may represent underlying sea surface temperatures (SSTs)
and clear skies, but in another region (season), it may repre-
sent an area that is obscured by upper-level cirrus or by low-
lying uniform fog. To account for various background SSTs,
which range on average between 5° and 30°C in this region over
the course of the year, and better capture these differences in
BTs for similar features, the AOI (0°-50°N) was further divided
into two subsets by latitude range (0°-30°N, 30°-50°N) seen in
Fig. 1 as subregions C and B, respectively.

3) TRAINING AND VALIDATION DATASETS

The training and validation datasets were comprised of de-
scending node VIIRS passes over the open northern Pacific
Ocean from December 2018 to November 2019 that corre-
sponded to an equatorial pass of 0130 LST on the night of the
full moon * 1 night.
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FIG. 1. AOI for the study was a bounding box 50°N, 0°, 125°W,
180° (A). AOI was further divided into two subregions (B) and
(C) at 30°N. Base map modified from https:/learningweather.psu.edu/
node/59.

4) TESTING DATASETS

The primary testing dataset for the final three latitude models
covered the same AOI and relation to the full moon as the first
dataset, but used an independent dataset from December 2019 to
November 2020. An additional dataset from 21 May 2020 to
20 July 2020 was used to qualitatively assess the contrast consis-
tency of ML-NVI imagery across the full lunar cycle. Finally, vari-
ous additional sets were used for qualitative comparisons for
specific weather phenomena to include tropical cyclones and fog.
The date-time groups (DTGs) for these sets are provided in the
case studies.

b. Data processing

First, lunar reflectance values were calculated from DNB
radiances using the Miller and Turner (2009) algorithm.
VIIRS M-band measurements, Miller and Turner (2009) lu-
nar reflectance values, and DNB radiances were then proc-
essed with the Python package Satpy (Raspaud et al. 2019) to
reproject all data to the DNB footprint and corresponding
pixels with the nearest neighbor approach. This was done to
ensure that the inherent resolution and viewing geometries
were consistent. During this process, all data were scrubbed
to remove any datasets that had missing values for any of the
predictors or predictand. To reduce any additional bias from
the bow-tie effect, training and validation datasets were ad-
justed to only include data in the first aggregated scan of the
DNB, specifically to only include 600 pixels to the left and
right of nadir. These pixels represent a total distance of 450 km
across the scene. This created 25 sets of 90+ matching DTGs,
12 sets for the training and validation datasets and 13 sets for the
independent testing dataset. These data could be further divided
by month, meteorological season, or latitude if desired.

¢. Predictand and predictor selection

To best create and evaluate the ML-NVI model, the resulting
predictand must be able to be qualitatively and quantitatively
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TABLE 1. List of model predictors, the associated central
wavelengths or central wavelength BTDs, and corresponding
sensor wavelength range.

Central wavelength Wavelength

VIIRS band (um)/(BTD) range (um)
M13 4.05 3.97-4.13
M14 8.55 8.4-8.7
M15 10.76 10.26-11.26
M16 12.01 11.54-12.49
M13M14 BTD 4.05-8.55 —
M13M15 BTD 4.05-10.76 —
M13M16 BTD 4.05-12.01 —
M14M15 BTD 8.55-10.76 —
M14M16 BTD 8.55-12.01 —
M15M16 BTD 10.76-12.01 —

compared to truth. The only nighttime visible data come from
the DNB radiances. While scaling of radiances makes visually
appealing imagery to the end user, there is no single standard
scaling metric or measurement; thus, “quantitative assessments
on nighttime visible imagery are challenging given the qualitative
nature of most image products, and details of the scenes used for
assessments (Seaman and Miller 2015).” A quantitative assess-
ment of these scaling applications of radiances for digital display
would be an assessment of recreating a specific scaling, not
against a measured quantity. The Miller and Turner (2009) lunar
reflectance is currently the only DNB-derived value that can be
used for quantitative comparisons for nighttime data from satel-
lite retrievals. It allows for a quantitative evaluation of model-
generated values used for nighttime imagery that has previously
been described only for daytime visible imagery or nighttime IR.

The model predictors and associated wavelengths are seen
in Table 1. Initial channel selection was based on wavelengths
with similar bands between the VIIRS and Advanced Base-
line Imager (ABI) sensors. The maximum and minimum val-
ues for each wavelength to be used for normalization were
taken from the JPSS VIIRS SDR Radiometric Calibration
ATBD (Line et al. 2018). The BTDs selected were based on
wavelength relationships highlighted in previous sections.
Considerations for channel combinations included all four of
Hillger’s (2008) recommendations for satellite product devel-
opment. While experiments were conducted to replicate the
current retrieval with fewer predictors, to include not using
the BTDs with the understanding that the model would re-
solve BTD relationships, these models did not produce the
same quality imagery as the all-channel all BTD retrieval. All
predictors were therefore kept. The final input set for training
at the largest AOI data consisted of a 2D array sized
510394368 X 10 representing the number of pixels and num-
ber of predictors for data in the prescribed AOI and moon
criteria. The independent VIIRS assessment 2D array was
sized 543 686 656 X 10.

4. Model architecture and training

We trained a feed-forward neural network (FNN) model to
create the ML-NVI from IR BT and BTDs using the dataset
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FIG. 2. Architecture for the ML-NVI. Model architecture consists of 10 inputs, 2 hidden layers with 8 nodes, 1 hid-
den layer with 4 nodes; all with an Adam optimizer, MSE loss function, and ReLU activation functions; and a single

node output layer using the sigmoid activation function.

for December 2018-November 2019. The FNN accounts for
nonlinearity and processes data pixel by pixel which enables
us to further restrict the training dataset more easily if
needed. As seen in Fig. 2, the final baseline FNN model has
10 inputs and is composed of three hidden layers (the first two
with eight nodes and the third one with four nodes) using rec-
tified linear unit (ReLU) activation and a single node for an
output layer that uses sigmoid activation. The model uses an
Adam optimizer value of 0.001 and mean-square error (MSE)
for its loss function. The number of hidden layers and nodes
was chosen after sample runs indicated there was no signifi-
cant increase to the learning done with further increase in the
number of hidden layers or nodes.

Once the baseline model architecture was established,
training data were then split 80-20 using the “train_test_split”

function from the Python model sklearn to accomplish model
training (Pedregosa et al. 2011). This baseline model was run
repeatedly over various batch sizes and epochs for the three
different AOIs. Results of this can be seen in Table 2. It was
noted that regardless of batch size and latitude data input,
training leveled off after 5-10 epochs and then again around
20-30 epochs. The value gained by these extra epochs was
minimal in comparison with the values gained in batch size
trade-offs. The metric results between varying the batch sizes
between 256, 512, 1024, 2048, and 4096 demonstrated that the
value gained from smaller batch sizes was minimal in relation
to the additional training time. An epoch size of 40 and a
batch size of 2048 were chosen for the final model setup.
Once the batch and epoch sizes were finalized, training
datasets from each latitude range [0°-30°N (tropic model),

TABLE 2. The FNN was trained over various epochs and batch sizes for each latitude to determine the preferred combination
based on the training and validation MSE and MAE. The model that had 40 epochs and a batch size of 2048 performed the best
overall and most consistently regardless of the latitudes associated with the training data.

Model (epoch/batch size) Training latitude MSE MAE V-MSE V-MAE
10, 256 0°-50°N 0.0175 0.0872 0.0179 0.0867
30°-50°N 0.0285 0.1212 0.0287 0.1223
0°-30°N — — — —
30, 512 0°-50°N 0.0204 0.0988 0.0203 0.098
30°-50°N 0.02828 0.1206 0.028 0.1202
0°-30°N 0.0083 0.065 0.00826 0.0605
30, 2048 0°-50°N 0.0178 0.0884 0.0177 0.0884
30°-50°N 0.0289 0.1219 0.029 0.1251
0°-30°N 0.0086 0.062 0.0086 0.0625
40, 2048 0°-50°N 0.0174 0.0868 0.0175 0.087
30°-50°N 0.294 0.125 0.029 0.125
0°-30°N 0.00847 0.0613 0.008 48 0.0622
30, 4096 0°-50°N 0.0197 0.094 0.0198 0.094
30°-50°N — — — —

0°-30°N
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30°-50°N (midlatitude model), and 0°-50°N (full-latitude model)]
were processed to create a separate latitudinal model for each
region (A, B, and C). All three latitude models were assessed
for their skill over all three latitude regions. The division in
training and assessment by latitude enabled an evaluation of
the differences in training and model evaluation over tropical
versus midlatitude SSTs, atmospheric profiles, and cloud fea-
tures. Furthermore, it helped capture instances where equiva-
lent lunar reflectances can be the same but are indicative of
different features. This latitude division also aimed to evaluate
the benefit, if any, for latitude-trained specific models versus a
global use model.

5. Model evaluation and results

Loew et al. (2017) stated that “the ultimate goal of a valida-
tion exercise is to assess whether a dataset is compliant with
predefined benchmarks (requirements) that quantify whether
a dataset is suitable for a particular purpose.” While require-
ments for the accuracy of radiometers exist and there are de-
sired skill scores for various radiance-derived products, there
are currently no predefined benchmarks for imagery evalua-
tion. The closest benchmark would be the imagery and valida-
tion efforts and analysis methods from NOAA-NASA for the
ABI channels. This process first conducts visual inspection for
feature determination and temporal image consistency. Next,
a qualitative comparison with imagery between legacy and
current GOES imagery as well as imagery from polar orbiters
is done to assure channels are at least a similar quality. After-
ward, a quantitative comparison of reflectance and brightness
values from level-1B radiances and ground calculated values
is done (Pitts and Seybold 2010). Much of the ABI validation
efforts are subjective in their feature determination and com-
parison of quality to other similar products.

The predefined benchmarks for VIIRS imagery are also
qualitative and subjective in nature. As highlighted by Hillger
et al. (2016), “A major component in the overall strategy for
the Imagery calibration and validation (Cal/Val) effort for the
Visible Infrared Imaging Radiometer Suite (VIIRS) is to en-
sure that the Imagery is of suitable quality for effective opera-
tional use. Imagery of sufficient quality is often determined by
the ability of human users to easily locate and discriminate at-
mospheric and ground features of interest.” This demonstrates
the highly subjective nature of imagery validation and bench-
marks. One user may need a product to highlight upper-level
clouds, another may need low cloud features, and a third may
need clear free line of sight to the surface. All may look at the
same product and come to different conclusions on its useful-
ness. Kidder et al. (2000) highlighted that satellite-derived
products and algorithms need to provide an accurate analysis
of the important meteorological features and “do not need to
work on the unimportant features of the image.” As an exam-
ple, they further explained that “an algorithm designed to
monitor a low-level feature such as fog/stratus does not need
to be precise for high cold clouds.”

The purpose of the study is to create a quantifiable value
that represents a physical quantity (pseudo-lunar reflectance)
and enables resulting imagery that presents clouds at night
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similar to that of visible or DNB imagery. The greatest focus
on cloud detection is for low clouds that are otherwise difficult
to detect at night; however, the product will be qualitatively
compared for the cloud types present in the imagery. Quanti-
tative assessments are done for values across the entire scene
and ranges to determine the overall performance of the syn-
thetic lunar reflectance as a substitute for full moon DNB lu-
nar reflectance values. Independent data from December
2019 to November 2020 was used to evaluate all three latitude
models in all three AOIs (A, B, and C), resulting in nine sets
of statistics and qualitative imagery comparisons.

Similar to Pitts and Seybold (2010), we first conduct a quali-
tative analysis of imagery from the three latitudinal models in
comparison with the Miller-Turner lunar reflectance, IR, and
low cloud split window (10.6-4.05 wm) products to determine
the preferred model based on visualization of various cloud
features. All three models were compared for the entire data-
set, as well as for specific cases, and thus, discussion on these
may be included for cloud feature assessment. However, in-
termodel comparisons will be demonstrated for only a few
samples with lunar reflectance range comparisons, lunar cycle
assessment, and case studies focused on the latitudinal model
of choice. Additional imagery for more comparisons between
the three latitudinal models is available upon request.

a. Intermodel comparisons
1) QUALITATIVE ASSESSMENT

The first comparisons, seen in Figs. 3 and 4, are done be-
tween DNB lunar reflectance, one VIIRS IR M band, M13
(4.05 pm), the split window (10.76-4.05 um), and the three
latitude ML-NVI models at the full moon. Figure 5 also pro-
vides a sample of all three latitude models but includes M15
(12.01 wm) instead of the split window. The focus for the im-
agery is for use over open ocean and coastal regions; however,
the case samples do include some land features and clouds
over land. Each latitude model addresses similar cloud types
differently because the models were only trained on data
(background SSTs and cloud types) specific to that region.
The impact of latitude-specific trained models and their use-
fulness for other regions is most apparent in the top-left cor-
ner of Fig. 4 where the tropical model has created additional
cloud cover over the clear ocean due to the SSTs. The con-
trast is apparent in the overall contrasts between the three
models in Figs. 4-6. The added contrast provides the ability to
gain more depth of clouds in the ML-NVI over the other IR
channels and products. This demonstrates the potential to
catch a forecasters’ eye more easily when they are reviewing
imagery and make a better assessment of the cloud features in
question.

Beginning with existing products, Fig. 3 highlights differ-
ences between the DNB lunar reflectance, M13, and the split
window (10.76-4.05 wm) in how each addresses the ship
tracks that are centered on 39°N and 123°W. While present in
all imagery except the shortwave infrared (SWIR), their sig-
nal is strongest in the lunar reflectance, the midlatitude ML-
NVI, and the full-range ML-NVL
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Qualitative ML-NVI Model Comparisons
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FIG. 3. (top) Qualitative comparisons (left to right) of images from DNB radiance calculated lunar reflectance, VIIRS M13 (4.05 um),
and VIIRS SW (10.76-12.01 um) sensors and (bottom) predicted lunar reflectance for the three latitudinal models (full latitude, tropical
latitudes, and midlatitudes). Image is from the northern Pacific open ocean at 1026 UTC 12 Dec 2019.

The model trained on data from 0° to 30°N has the least
contrast of the three models over these samples. This is be-
cause the observed BTs in the predictors are much colder
than the tropical SSTs that represented clear skies so the
model assumes that there must be interference to the surface
and the BT interpretation is a reflectance indicative of a cons-
tant thin cloud layer over cold SSTs. This results in lunar re-
flectance values that are in a smaller range and overforecast
reflectance values for clear skies. This model did have decent
contrast and performance in the tropical cyclone (TC) exam-
ples and scenes over warm SSTs. This demonstrates that this
model will only perform well with warm background SSTs.
The model trained from 30° to 50°N appears to have the
greatest contrast of the three models and may be the closest
to the DNB at first glance. This is because these images cover
a majority of the latitudes that this model was trained on.

Thin cirrus is absent in the DNB, appears bright white in
the IR blocking the underlying clouds, and appears as a semi-
transparent mask that you can “see through” to the clouds be-
neath in the three ML-NVI models. Due to its transparency,
we can still detect low to mid-clouds in layers below it that are
absent or blocked in the IR imagery.

Additionally, all three latitude models capture low-level
clouds, such as open ocean stratocumulus, that are visible in

the DNB lunar reflectance but not captured well, if at all, in
the IR samples as seen in the bottom of all images in Fig. 3,
with the best contrast in the full-latitude model. Though not
as bright as DNB lunar reflectance, it is possible to infer the
layers of clouds in the models similar to the DNB with higher/
thicker clouds being brighter (colder) in comparison with
lower and with more contrast for lower-level features than
seen in the IR. This assessment holds true with the exception
of the previously mentioned cirrus clouds that are optically
thin and appear translucent but darker than thick cumulus.
Through additional imagery assessments, it was determined
that although the contrast varies between the three latitude
models, all models are able to capture ship tracks and provide
better texture of clouds to help indicate actual cloud feature
versus a uniform field as seen in IR. Figure 5 is used to high-
light the differences in model performance over warmer SSTs
found in tropical regions and demonstrates its capabilities and
limitations with convective activity. In this case, the midlati-
tude model captures in the lower-right corner the best; how-
ever, it struggles with contrast for the lower-level cloud
features in the tropics just like the tropical model did at
midlatitudes.

In comparison with the single-channel IR wavelength imag-
ery, the human eye can visualize the low-level cloud features
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Qualitative ML-NVI Model Comparisons at d20191211_t1044146
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FIG. 4. (top) Qualitative comparisons (left to right) of images from DNB radiance calculated lunar reflectance, VIIRS M13 (4.05 um),
and VIIRS SW (10.76-4.05 um) sensors and (bottom) predicted lunar reflectance for the three latitudinal models (full latitudes, tropical
latitudes, and midlatitudes). Image is from the northern Pacific of the West Coast of the United States and over open ocean at 1044 UTC

11 Dec 2019.

better in the models. As model predictions are created from
thermal emissions, the contrast between clear skies and clouds
does not appear as vividly as the true DNB lunar reflectance.
The clouds appear brighter than the clear skies, and intuition
would show low and layered clouds, missed by IR interpreta-
tion alone, are present. An additional example of texture and
this contextual clue to forecasters is in the lower-right corner
of Fig. 4 in which all models capture clouds similar to the
DNB lunar reflectance, while the texture is minimum in the
IR and split window. The models are also able to remove
man-made lights seen in Fig. 10 most likely due to the lights
not having a signature in the IR channels as they do in the vis-
ible. In the absence of city lights, populated areas appear
darker (warmer) than the surrounding land which may be
capturing the presence of urban heat islands. More investiga-
tion must be done before determining the performance of the
ML-NVI for clouds over land.

Qualitatively, the full-latitude model performed best for all
the cloud types and accounts for all SSTs between 0° and
50°N that are seen in open oceans, appearing similar to the
low-latitude model in the tropics and to the midlatitude model
in the middle latitudes.

2) QUANTITATIVE ASSESSMENT

An evaluation of the underlying data distribution for each
model is done before evaluating the specific sets of observa-
tional points. Comparisons of the distribution of the three

latitude model predictions for the validation sets relative to
each other and the true reflectance can be seen in Fig. 6. Note
that the lunar reflectance value distribution is not normally
distributed. The probability density functions (PDFs) further
not only highlight the percent of observation types (i.e., reflec-
tance values) but also visually demonstrate differences in
cloud detection ability at various reflectance values and by
models. A difference in the value density when compared to
the DNB distribution is most present in areas of low reflec-
tance and is common for all three models. As noted in the
qualitative assessment, this shift is partly due to the capturing
of cirrus clouds by the ML-NVI. All three models appear to
have performed similarly in this shift and throughout the
range of reflectances in the PDF; however, visually we see
how the specific model differences manifest when turned into
imagery. From approximately 0.1-0.35 reflectance values, the
low-latitude model underforecasted values, while the midlati-
tude model overforecasted values, and above 0.35, the inverse
is true. The middle reflectance values are the hardest to detect
and may be indicative of layered clouds, low or midlevel
clouds, or scenes where the cloud features are smaller than
satellite pixels. The full-latitude model appears to perform
best in these cases. The highest reflectances represent opti-
cally thick clouds and thunderstorm clouds that are typically
well identified in the IR due to the strong thermal contrast. A
cursory look of the PDFs indicates that the full-latitude model
has the greatest distribution similarity to the truth across the
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Qualitative NVI Model Comparisons
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FIG. 5. (top) Qualitative comparisons (left to right) of images from DNB radiance calculated lunar reflectance, VIIRS M13 (4.05 um),
and VIIRS SW (10.76-4.05 um) sensors and (bottom) predicted lunar reflectance for the three latitudinal models (full latitudes, tropical
latitudes, and midlatitudes). Image is from the northern Pacific at lower latitudes over open ocean between Mexico and Hawaii at

1113 UTC 12 Dec 2019.

reflectance spectrum. Important to note in the PDF is the lo-
cation of the spikes in the larger lunar reflectance values seen
across all datasets. It peaks at 1 in the lunar reflectance as this
is a maximum set as reflectance, in theory, would not extend
beyond this. However, due to scattering, signal noise, and city
lights, measurements may exceed 1. Underforecasting trends
and biases can be seen in the models based on the location of
this peak and can give insight into the range of values each
model may predict.

Next, statistical calculations were conducted to assess the
overall capability of the ML-NVI for full moon scenes over
the open ocean for all three models at all three latitude
ranges. The product is designed to function regardless of
moon phase; however, model creation and quantitative vali-
dation were conducted near the full moon, as this is when the
highest quality DNB data are available.

During visual inspection of the qualitative imagery, it was
observed that sections of the lunar reflectance imagery
patches were fully black although there were no missing data
in the raw DNB radiances. It was determined that this was
due to the specific moon angles for which the Miller and
Turner (2009) lunar reflectance is not calculated; thus, all data
points where the DNB lunar reflectance truth was either 0 or
Not a Number (NAN) were removed. These points account
for approximately 2% of the evaluation data and, while

present for imagery creation, were removed before statistical
calculations were performed and PDF distributions were
created.

Quantitative scores for the three models are provided for
the overall datasets, and thus, there is unintentional weighting
based on the reflectance distribution. A chart of the statistical
results for all three latitudinal model assessments at the three
validation latitudinal bands is provided in Table 3. There are
currently no other published data utilizing lunar reflectance to
provide baseline metrics for direct comparisons. As nighttime
visible data become available, it will be critical to ensure com-
parison metrics are made between similar datasets. For this
reason, metrics are based on all valid pixels and are not cur-
rently divided by cloud type or height.

The three models were compared using the following met-
rics: explained variance, R-squared, root-mean-square error
(RMSE), mean absolute error (MAE), Spearman’s correla-
tion, correlation coefficient (CC), Kullback-Leibler diver-
gence (KLD), and Jensen-Shannon divergence (JSD). As
expected, performance metrics were generally best when indi-
vidual latitude models are evaluated on the same latitude
ranges they were trained on. Still, there was only a 12% dif-
ference in the explained variances between the best and worst
models for a latitude. When looking at overall error, lunar re-
flectance was evaluated from O to 100 and the differences
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Probability Density Function for Lunar Reflectance Values: AOI ON-50N (bins = 1000)
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FIG. 6. PDFs of the three latitudinal model lunar reflectance distributions vs the true DNB lunar reflectance distribution
for the 0°~50°N validation AOI.

ranged between 3 and 4 for MAE with the exception of the
tropical model performance over midlatitude ranges which
was significantly worse than the midlatitude and full-latitude
models for this area. It is important to note that the model
performance on the full-latitude dataset may also be biased
toward the percentage of data points made up by each lati-
tude range.

Using the full set of predictors, the model has an explained
variance value of 0.76. While this is a good value, especially as
it only considers spectral relationships, the inclusion of a

predictor with information on spatial context may further im-
prove skills in model variance. The ranges of MAE and
RMSE further demonstrate the spread of the data and are
within a reasonable amount when considering that lunar re-
flectance is a visual proxy for total cloud cover which is often
measured in octas. Spearman’s correlation and correlation co-
efficients between the ML-NVI and true DNB lunar reflec-
tance range between 82% and 89%, indicating a strong
positive relationship between the two. To further quantify
this relationship, KLD and JSD scores were calculated. JSD

TABLE 3. A consolidation of the validation metrics for all three latitude models across all three latitude validation regions. Scores
for the full-latitude model in the 0°-50°N° AOI demonstrate model performance for the use of a singular global model across all
seasons and latitude.

2020 ML-NVI validation metrics

Model Latitude range Explained variance R2 RMSE MAE Spearman correlation CC KLD JSD

°~50°N full latitude 0°-50°N 0.76 076  11.83 82 0.86 0.87 0.08 0.14
30°-50°N 0.67 0.67 1442 1134 0.82 0.82 0.08 0.15

0°-30°N 0.8 079 1020 6.35 0.87 09 007 013

30°-50°N middle latitude 0°-50°N 0.72 0.682 13.56 9.0 0.85 0.85 0.09 0.15
30°-50°N 0.68 0.657 14.63  10.99 0.83 0.83 0.08 0.14

0°-30°N 0.71 0.655 1319 7.98 0.85 085 01 015

0°-30°N low latitude 0°-50°N 0.64 0.577 1568 10.77 0.8 081 011 0.17
30°-50°N 0.51 0.166 22.85 1824 0.71 072 013 0.19

0°-30°N 0.83 083 933 6.23 0.87 091 006 0.12
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scores range between 0 and 1 with the lower number indicat-
ing the similarity or minimal divergence between the two sets.
The JSD scores for the full-latitude model ranged between
0.12 and 0.15 and indicate there would be only a small adverse
impact if the ML-NVI values were to be used in place of the
DNB lunar reflectance for modeling or calculations if using
the full-latitude model to create lunar reflectance and these
are only 0.01 higher than the scores obtained by the sublatitu-
dinal models as demonstrated in Fig. 7 with the full lunar cy-
cle. This highlights the ability to have a greater visibly
intuitive product with a scaled consistency for forecasters
across the lunar cycle as the ML-NVI predicts what a full
moon lunar reflectance would be regardless of the actual
moon phase, angle, and existing lunar reflectance and the abil-
ity to use one model (full latitude) for the whole globe. It is
possible to infer what lunar reflectances would be expected
for the observed phenomena at any lunar phase if a full moon
existed instead based on the lunar reflectance values created
from our model. From this, it could be possible to even utilize
daytime cloud mask algorithms at night if the day and night
reflectance differences in the 3.9-um band are accounted for
(Miller et al. 2022).

3) MODEL OF CHOICE

Based on qualitative analysis over imagery in the AOI cov-
ering all full moon periods from December 2019 to November
2020, and model prediction metrics, the full-latitude model
(0°-50°N) is the best-performing model overall. For midlati-
tudes, it holds its own against the 30°-50°N (midlatitude)
model and significantly outperforms the 0°-30°N (tropical)
model. In the tropical regions with warmer SSTs, it is very
similar in model performance to the tropical model, while the
midlatitude model has the poorest performance. Quantita-
tively, the full-latitude model reflectance values are the most
closely aligned to the DNB reflectance and provided the best
representation of clouds among the three models with mini-
mal loss of information. Because of this, the full-latitude
model is the model of choice, and the remainder of model
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validation and future case studies will be on the full-latitude
model, hereby referred to as the ML-NVI.

b. Model of choice performance
1) LUNAR REFLECTANCE RANGE ASSESSMENT

Overall model performance was addressed during intermo-
del comparisons, but an assessment of the chosen model’s
performance over ranges of reflectance values is also useful.
In addition to the previously discussed PDF in Fig. 6, a scat-
terplot of the full-latitude model’s performance versus the
true DNB lunar reflectance can be seen in Fig. 7. The lower-
left corner represents clear skies with lunar reflection values
in truth and predictions of zero, and the upper-right repre-
sents lunar reflectivity values of one in each. The one-to-one
line and model best-fit lines are also noted. The scatterplot
shows a positive trend between the datasets, and though in
some lunar reflectance value ranges they appear to be much
more widely distributed along the one-to-one line, the relative
differences in the dataset are small.

Because of data distribution and interest in performance
over specific data ranges, we look to assess differences in lu-
nar reflectance values between the truth and model at multi-
ple lunar reflectance ranges. The World Meteorological
Organization (WMO) suggests that for cloud cover compari-
sons, data and models/predictions be divided into cloud cate-
gories versus a continuous scale, though they do not specify
category thresholds (Zhongming et al. 2012). WMO height
and total cloud cover categories for observations and terminal
aerodrome forecasts usually line up with aviation flight safety
requirements (Weiss 2001). A review of research shows that
most studies divide the total cloud cover into observational
categories based on sky octa obscuration (clear, few, broken,
scattered, and overcast), into three categories based on cloud
amount (clear, partly cloudy, cloudy), or into 10% bins for
precise measurements of cloudiness (Warren et al. 1988;
Kidder and Vonder Haar 1995; Hogan et al. 2009; Zhongming
et al. 2012). When using satellite, threshold techniques are a
common way to delineate between cloud amount categories
and transfer well for reflectance values (Kidder and Vonder
Haar 1995). Solar reflectance values for clear skies over the
open ocean range between 0 and 0.2; thus, these values would
represent clear skies in lunar reflectance as well, while pixels
with values above that would have some form of clouds
(Ackerman et al. 1998; Kim et al. 2017).

Data were divided into five even ranges of true lunar reflec-
tance values (0-0.2, 0.2, 0.4, 0.4-0.6, 0.6-0.8, and 0.8-1), and
value differences between the truth observed lunar reflec-
tance values and full-latitude model predicted lunar reflec-
tance values as well as the mean and standard deviations are
seen in Fig. 8 for the five subranges. The percentage of the
overall data based on bin ranges is shown in Table 4. Consid-
ering this breakout, and referencing Fig. 6, a large amount of
the dataset included clear skies; thus, the overall dataset stan-
dard deviations may be biased toward the model performance
on the lower lunar reflectance values.

Dividing the dataset into these ranges of lunar reflectance
versus looking solely at the overall dataset deviations enables
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FIG. 8. Distribution of true DNB lunar reflectance—full-latitude model reflectance differences evaluated at 0°~50°N
AOI for true lunar reflectance values between (a) 0.0-0.2, (b) 0.2-0.4, (c) 0.4-0.6, (d) 0.6-0.8, and (e) 0.8-1.0.

an additional understanding of model performance. Lunar re-
flectance values less than 20 usually represent clear skies;
however, they can also represent the presence of optically
thin clouds such as cirrus, which the DNB does not detect but
the ML-NVI does as seen in the qualitative imagery assess-
ment, or low stratus. As reflectance values increase, optical
depth values also increase, and this could be due to layer

TABLE 4. Dataset composition across five range bins used in
evaluating skill for lunar reflectance differences.

2020 dataset lunar reflectance range value composition

True lunar reflectance value range Percentage of dataset

[0, 0.20] 50.5
[02,04] 19.9
[0.4, 0.6] 15.7
[0.6, 0.8] 10.1
[0.8, 1] 38

[0-1] 100

clouds or growing cumulus. This evaluation is not a direct as-
sessment of how the model performs for various cloud types or
cloud heights but does provide insight into performance for dif-
ferent lunar reflectance ranges in which performance can be in-
ferred (Liou 2002; Kidder and Vonder Haar 1995). In general,
the larger the values of lunar reflectance, the greater the stan-
dard deviation in truth model values. Additionally, at lower val-
ues the model tended to predict greater lunar reflectance values
more often than in the DNB lunar reflectance, but as the true
lunar reflectance values increased it tended to underpredict the
reflectance values more and with a greater deviation.

2) LUNAR CYCLE ASSESSMENT

In addition to analysis at full moon, a qualitative assess-
ment was done on ML-NVI performance over the full lunar
cycle for the model of choice, the full-latitude model. The
DNB sensor gathers radiance values from sources other
than the moon (airglow, city lights, aurora, etc.); because of
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this, some DNB products (HNCC, NCC, and erf scaling)
can create images regardless of the moon phase, but addi-
tional processing must be done and imagery is not standard-
ized to retain the same contrast across the lunar cycle.
Lunar reflectance cannot be calculated for all phases as the
Miller-Turner calculations require the moon to be at a spe-
cific lunar zenith angle. Figure 9 makes comparisons be-
tween DNB lunar reflectance imagery, the full-latitude
model imagery, and M-band 15 (12.01 pum) for two lunar
cycles over the Hawaiian Islands, a region of warmer SSTs.
During half of the lunar cycle, lunar reflectance data are not
able to be calculated; thus, imagery based on reflectance is
not available (as seen by the black images for lunar reflec-
tance in Fig. 9 rows 1 and 3) and other DNB-scaled prod-
ucts must be used. The ML-NVI provides lunar reflectance
values and visual imagery similar to that of DNB that would
appear at full moon periods but with consistent shading
across the lunar cycle as seen in the center column of Fig. 9.
Since IR is fully emissive and the model was trained solely
on full moon scenes, calculated model reflectance values do
not respond to lunar cycles and ML-NVI can provide visu-
ally consistent nighttime visible imagery, even when DNB
lunar reflectance is not available, that enhances cloud iden-
tification over IR alone, allowing users to learn only one
presentation of features for the full lunar cycle versus vary-
ing representations as seen in most DNB enhancements. In
comparing the ML-NVI to the IR over the mountains of the
Big Island (located in the region bounded by 19°, 20°N, 156°
and 155°W), as seen in the second row, the ML-NVI does
not interpret these cold land features as clouds with large
cold signatures.

6. Case presentation and conclusions

After a general qualitative and quantitative assessment of
the ML-NVT’s ability to detect cloud and clear skies across
the full lunar cycle, ML-NVI was applied to specific meteoro-
logical phenomena where the improved detection of low
clouds may benefit observers and forecasters. ML-NVI can
enhance the detection of low clouds at night over traditional
IR, which is especially critical for fog formation and tropical
cyclone (TC) forecasting.

a. Fog cases

Enabling a forecaster to better visualize fog formation, ex-
tent, and dissipation can enhance flight safety and aid to mini-
mize impacts from fog to busy coastal airports and for
mariners at seaports. Figure 10 shows two fog events: The top
row is of a coastal fog event on 7 September 2020 with 82%
illumination, and the bottom row is an event of Mexico on
6 October 2017 when there was 99% illumination. In addition
to coastal fog over California on 7 September 2020, California
had a series of wildfires and significant smoke. This can be
seen in the lunar reflectance imagery as the city lights appear
hazy in the interior regions near where fires were located.
More details about these events are found in a recent publica-
tion by Miller et al. (2022) which also highlights the impor-
tance of reliable nighttime low cloud detection. While both
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cases are for periods of high illumination, the case for Mexico
is outside of the initial model AOI and both show potential
subjective performance over land. A quick look shows overall
greater contrast in the clear and cloud portions of the images
with the best being in the DNB lunar reflectance, followed by
the ML-NVI, the split window, and then traditional IR. When
comparing the ML-NVT to the IR or split window, especially
noticeable is how clear the extent of the fog bank appears and
the texture in the ML-NVI. The ML-NVI also appears to cap-
ture to some degree SST differences as seen in the California
case. A comparison to the daily SSTs and the extent of the
wildfire smoke shows that the turbulent features seen in the
ML-NVI imagery along the California coast must be due to
the SSTs.

One of the key elements of forecasting fog dissipation is the
point of the forecast location with respect to the fog boundary
(Gurka 1978b,a). The ML-NVI provides good ability to detect
this boundary as seen in Fig. 10 with the fog boundary for the
region in the lower-left corner detectable in DNB and ML-
NVI but harder to detect from the IR and split window. From
this, one may be able to determine more precisely the extent
of the fog layer and time of its dissipation. Miller et al. (2022)
highlighted that the bottom case was an event in which the
split windows incorrectly identified fog which was then uti-
lized as a cloud mask. It appears that this may be the case
for areas along the coast and to the southwest of Mexico
looking at the split window versus the DNB and the
ML-NVI. An additional potential use of ML-NVI can be to
improve cloud masks. We also see the location of the
California coastal current, compared to the open ocean in
the ML-NVIs due to the significant temperature SST con-
trast; however, its uniform smooth texture helps to identify
it as such versus low clouds for visual analysis especially
when combined with the lunar reflectance product. There
may be other beneficial uses for visualizing the SST con-
trast, but they were not explored at this time. On land, we
see city lights removed with the ML-NVI. In this case, this
enhances the ML-NVT’s ability to see the fog inland from
the Monterey Bay region at 37°N, 122°W. Overall, the
ML-NVI highlights the fog better than the IR or the split
window and is helpful for detecting the fog extent when not
possible with DNB due to illumination.

b. Tropical cyclone case

The Operational Line Scanner (OLS), the predecessor to
the DNB, determined there was a 1-2°/60-120 nautical mile
(n mi; 1 n mi = 1.852 km) difference in pinpointing the center
position location of tropical cyclones between using IR and
nighttime visible sensors for low-level circulation (Miller et al.
2006). Additionally, the turn to using nighttime visible sensors
such as OLS and DNB over IR when available had significant
effects on wind fields and forecast timing (Miller et al. 2006).
By using the ML-NVI in the same capacity that OLS or DNB
is currently used for both manual and automated processes
such as in CIRA’s red-green-blue (RGB) multispectral en-
hancement or the Automated Rotational Center Hurricane
Eye Retrieval-II (ARCHER-II) algorithm, center position
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Qualitative Comparisons Lunar Cycle
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FIG. 9. Lunar cycle comparisons (left to right) of images from DNB lunar reflectance, full-latitudinal model lunar reflectance, and M15
(12.01 wm) for (top to bottom) 1210 UTC 28 May 2020, 1220 UTC 2 Jun 2020, 1222 UTC 23 Jun 2020, and 1128 UTC 12 Jul 2020. High-
illumination periods are seen in rows 2 and 4 with low-illumination periods in rows 1 and 3. The quality and contrast of the ML-NVI
imagery seen are consistent over the full lunar cycle (center).
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Qualitative Fog Comparisons

M13 (4.05pm)
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FI1G. 10. Qualitative comparisons (left to right) of images from DNB radiance calculated lunar reflectance, VIIRS M13 (4.05 um), and
VIIRS SW (10.76-4.05 wm) sensors and predicted lunar reflectance for the full-latitude model. Images are from the northern Pacific open
ocean on (top) 0907 UTC 7 Sep 2020 and (bottom) 0931 UTC 6 Oct 2017.

fixes may become more precise than current nighttime IR
fixes as illustrated previously (Wimmers and Velden 2016).
Furthermore, animated ML-NVI imagery can help separate
the layers of cloud rotation and may improve the determina-
tion of TC intensity using Dvorak techniques and structure
knowledge in comparison with LWIR animations. Examples
of this are highlighted in the image comparison for Typhoon
Fengshen in Fig. 11. This cyclone case occurred outside the
AOI that was used for model training and validation demon-
strating an expanded use of the model.

West Pacific Typhoon Fengshen is seen in Fig. 11. The sam-
ples are from 13 November 2019 at 1438 UTC (top row) and
1529 UTC (bottom row), respectively. Lunar illumination for
this period was at 99%. Due to the location of the storm, suc-
cessive satellite passes approximately 50 min apart were able
to capture changes in the structure of the system. The DNB
lunar reflectance in the second row shows a circulation center
around 17°N and 152°E. In the corresponding ML-NVI, there
is a dark spot in the lower clouds in the same area, and in the
IR, this clearing is not present. Both rows show a long cloud
feature oriented from southwest to northeast in the box
bounded by 12°, 14°N, 150°, and 153°E. The imagery contrast
and structure of this feature are most prominent in the DNB
lunar reflectance imagery, but are also apparent in the
ML-NVI. This feature is present in the IR, but its shape is ob-
structed by upper-level cirrus. In this case, the ML-NVI pro-
vides a better assessment of storm structure than the IR for
use with the Dvorak technique. Additionally, individual areas
of convection centered around 18°N and 150°E are noticeable
in all three imagery types but appeared to be merged in the
IR, while the ML-NVI permits the detection of more individ-
ual convective areas presently seen in the corresponding DNB

lunar reflectance. Though these are data from the VIIRS chan-
nels, viewing two consecutive passes over the system aids to
demonstrate the benefit to TC forecasting that a geostationary
DNB-like product may provide even if its resolution is not as re-
fined as the DNB sensor as instead of two images there could
be from 5 to 50 depending on which scan is available over the
storm.

c¢. Conclusions

In this study, an ML model was developed using LWIR to
create pseudo-DNB lunar reflectances at full moon. Lunar re-
flectances are derived from measured satellite radiances en-
abling quantifiable metrics for nighttime synthetic imagery
products. Quantitative evaluations of the ML-NVI were con-
ducted with scores as seen in Table 3. Imagery created from
the synthetic lunar reflectance provides nighttime imagery to
the end user that behaves similar to DNB and solar visible im-
agery, retains a transparent visualization of upper-level
clouds, and still enables the ability to see lower-level clouds
unless it is a very dense and optically thick cloud as seen in
Figs. 3-5,7, 10, and 11.

The implications for environmental applications are numer-
ous. First, the ML-NVI provides a product that improves the
contrast issues seen in most DNB imagery products and pre-
serves a constant contrast regardless of the lunar cycle. This is
more intuitive to a forecaster and does not require additional
calculations or lookup tables as may be needed for scaled
DNB radiance products. This can aid in forecasting, especially
for polar regions, where there is more frequent coverage with
the JPSS satellites. Next, as seen above, ML-NVI can enhance
the ability to detect fog and low-level tropical circulations
more easily than IR alone or the low cloud split window
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Qualitative Comparison for Typhoon Fengshen

DNB Lunar Reflectance
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Fi1G. 11. Qualitative comparisons (left to right) of images from DNB radiance calculated lunar reflectance, predicted lunar reflectance
for the full-latitude model, and VIIRS M15 (10.76 wm). Images are from two consecutive passes over Typhoon Fengshen in the West Pa-
cific Ocean on (top) 1438 UTC 13 Nov 2019 and (bottom) 1529 UTC.

techniques and may also aid in minimizing false alarms for
cloud products. While geostationary satellites are often the pre-
ferred imagery to use for cyclone and fog forecasting, there are
observing and forecasting benefits to using polar orbiter imagery
for these events as well. The secondhand impacts to aviation
safety are vast. These examples demonstrate the use of NVI
and benefits it can bring on the JPSSs if made available in
real time. Hillger et al. (2016) stated that the “operational
applications of this nighttime imagery are the ultimate vali-
dation of its usefulness,” and we have demonstrated the
usefulness of the ML-NVI for low cloud identification with
a focus on tropical cyclones and fog. Once the ML-NVI al-
gorithm can be repurposed to run in near-real time, imag-
ery can be distributed for use to a wide range of forecasters
giving greater accessibility to the product.

The ML-NVI was designed as a proof of concept to demon-
strate that measurements derived from IR channels common
to both VIIRS and geostationary sensors, such as the ABI
and Advanced Himawari Imager (AHI), can be used to create
pseudo-lunar reflectances like those from measured DNB ra-
diances—in an environment where there is ample validation
data to test the performance. We have demonstrated both
qualitatively and quantitatively the ability to create visually

consistent nighttime visible imagery from LWIR across the
full lunar cycle. Ongoing research shows that the methodology
and models used for JPSS VIIRS ML-NVI do translate to
ABI and AHI sensors (Pasillas 2024, Pasillas et al. 2023,
Stanford et al. 2024). This will enable persistent nighttime
visible imagery via geostationary satellites for enhanced TC
monitoring and more precise visualization of fog coverage
extent to aid in the timing of fog formation and dissipation
over a region or site. Details on this transfer will be covered
in a follow-on paper.
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