The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Beyond microbes: Are fauna the next frontier in soil biogeochemical models?
-
2016
-
-
Source: Soil Biology and Biochemistry, 102, 40-44
Details:
-
Journal Title:Soil Biology and Biochemistry
-
Personal Author:
-
NOAA Program & Office:
-
Description:The explicit representation of microbial communities in soil biogeochemical models is improving their projections, promoting new interdisciplinary research, and stimulating novel theoretical developments. However, microbes are the foundation of complicated soil food webs, with highly intricate and non-linear interactions among trophic groups regulating soil biogeochemical cycles. This food web includes fauna, which influence litter decomposition and the structure and activity of the microbial community. Given the early success of microbial-explicit models, should we also consider explicitly representing faunal activity and physiology in soil biogeochemistry models? Here we explore this question, arguing that the direct effects of fauna on litter decomposition are stronger than on soil organic matter dynamics, and that fauna can have strong indirect effects on soil biogeochemical cycles by influencing microbial population dynamics, but the direction and magnitude of these effects remains too unpredictable for models used to predict global biogeochemical patterns. Given glaring gaps in our understanding of fauna-microbe interactions and how these might play out along climatic and land use gradients, we believe it remains early to explicitly represent fauna in these global-scale models. However, their incorporation into models used for conceptual exploration of food-web interactions or into ecosystem-scale models using site-specific data could provide rich theoretical breakthroughs and provide a starting point for improving model projections across scales.
-
Source:Soil Biology and Biochemistry, 102, 40-44
-
DOI:
-
ISSN:0038-0717
-
Format:
-
Publisher:
-
Document Type:
-
Rights Information:Accepted Manuscript
-
Rights Statement:The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: