U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Summer atmospheric circulation anomalies over the Arctic Ocean and their influences on September sea ice extent: A cautionary tale



Select the Download button to view the document
Please click the download button to view the document.

Details

  • Journal Title:
    Journal of Geophysical Research: Atmospheres
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Numerous studies have addressed links between summer atmospheric circulation patterns and interannual variability and the downward trend in total September Arctic sea ice extent. In general, low extent is favored when the preceding summer is characterized by positive sea level pressure (SLP) anomalies over the central Arctic Ocean north of Alaska. High extent is favored when low pressure dominates. If such atmospheric patterns could be predicted several months out, these links provide an avenue for improved seasonal predictability of total September extent. We analyze detrended September extent time series (1979–2015), atmospheric reanalysis fields, ice age and motion, and Atmospheric Infrared Sounder data, to show that while there is merit to this summer circulation framework, it has limitations. Large departures in total September extent relative to the trend line are preceded by a wide range of summer circulation patterns. While patterns for the four years with the largest positive departures in September extent have below average SLP over the central Arctic Ocean, they differ markedly in the magnitude and location of pressure and air temperature anomalies. Differences in circulation for the four years with the largest negative departures are equally prominent. Circulation anomalies preceding Septembers with ice extent close to the trend also have a wide range of patterns. In turn, years (such as 2013 and 2014) with almost identical total September extent were preceded by very different summer circulation patterns. September ice conditions can also be strongly shaped by events as far back as the previous winter or spring.
  • Source:
    Journal of Geophysical Research: Atmospheres, 121(19)
  • DOI:
  • ISSN:
    2169-897X ; 2169-8996
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha-512:2ba6f566a64b815fc794426406df40032dbdf3b93c31082b84b00d01fc0d85519b68efe72192aaf224277f3da7a6c5b5d8e1b7888477e36fa1a620c84e215fca
  • Download URL:
  • File Type:
    Filetype[PDF - 11.72 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.