Mitigation of CyanoHABs Using Phoslock® to Reduce Water Column Phosphorus and Nutrient Release from Sediment
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Mitigation of CyanoHABs Using Phoslock® to Reduce Water Column Phosphorus and Nutrient Release from Sediment

Filetype[PDF-2.40 MB]



Details:

  • Journal Title:
    International Journal of Environmental Research and Public Health
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Cyanobacterial blooms can be stimulated by excessive phosphorus (P) input, especially when diazotrophs are the dominant species. A series of mesocosm experiments were conducted in a lake dominated by a cyanobacteria bloom to study the effects of Phoslock®, a phosphorus adsorbent. The results showed that the addition of Phoslock® lowered the soluble reactive phosphate (SRP) concentrations in water due to efficient adsorption and mitigated the blooms. Once settled on the sediments, Phoslock® serves as a barrier to reduce P diffusion from sediments into the overlying waters. In short-term (1 day) incubation experiments, Phoslock® diminished or reversed SRP effluxes from bottom sediments. At the same time, the upward movement of the oxic–anoxic interface through the sediment column slightly enhanced NH4+ release and depressed N2 release, suggesting the inhibition of nitrification and denitrification. In a long-term (28 days) experiment, Phoslock® hindered the P release, reduced the cyanobacterial abundance, and alleviated the bloom-driven enhancements in the pH and oxygen. These results suggest that, through suppression of internal nutrient effluxes, Phoslock® can be used as an effective control technology to reduce cyanobacteria blooms common to many freshwater systems.
  • Source:
    International Journal of Environmental Research and Public Health, 18(24), 13360
  • DOI:
  • ISSN:
    1660-4601
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1