U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Influence of Oceanic Intraseasonal Kelvin Waves on Eastern Pacific Hurricane Activity



Select the Download button to view the document
Please click the download button to view the document.

Details

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Recent studies have highlighted the role of subsurface ocean dynamics in modulating eastern Pacific (EPac) hurricane activity on interannual time scales. In particular, the well-known El Niño–Southern Oscillation (ENSO) recharge–discharge mechanism has been suggested to provide a good understanding of the year-to-year variability of hurricane activity in this region. This paper investigates the influence of equatorial subsurface subannual and intraseasonal oceanic variability on tropical cyclone (TC) activity in the EPac. That is to say, it examines previously unexplored time scales, shorter than interannual, in an attempt to explain the variability not related to ENSO. Using ocean reanalysis products and TC best-track archive, the role of subannual and intraseasonal equatorial Kelvin waves (EKW) in modulating hurricane intensity in the EPac is examined. It is shown first that these planetary waves have a clear control on the subannual and intraseasonal variability of thermocline depth in the EPac cyclone-active region. This is found to affect ocean subsurface temperature, which in turn fuels hurricane intensification with a marked seasonal-phase locking. This mechanism of TC fueling, which explains up to 30% of the variability of TC activity unrelated to ENSO (around 15%–20% of the total variability), is embedded in the large-scale equatorial dynamics and therefore offers some predictability with lead time up to 3–4 months at seasonal and subseasonal time scales.
  • Source:
    Journal of Climate, 29(22), 7941-7955
  • DOI:
  • ISSN:
    0894-8755 ; 1520-0442
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha-512:d2ae7b9cc930ad3742b95577df3e87d4cee117e9fac5d0df313aebfb4d33c5adaf98cd0f049b92f4df7d40357b0dde72eb1a9947c123dfdd2f684f7a34cd1633
  • Download URL:
  • File Type:
    Filetype[PDF - 11.72 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.