Constraining Precipitation Susceptibility of Warm-, Ice-, and Mixed-Phase Clouds with Microphysical Equations
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Constraining Precipitation Susceptibility of Warm-, Ice-, and Mixed-Phase Clouds with Microphysical Equations

Filetype[PDF-7.25 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of the Atmospheric Sciences
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The strength of the effective anthropogenic climate forcing from aerosol–cloud interactions is related to the susceptibility of precipitation to aerosol effects. Precipitation susceptibility d lnP/d lnN has been proposed as a metric to quantify the effect of aerosol-induced changes in cloud droplet number N on warm precipitation rate P. Based on the microphysical rate equations of the Seifert and Beheng two-moment bulk microphysics scheme, susceptibilities of warm-, mixed-, and ice-phase precipitation and cirrus sedimentation to cloud droplet and ice crystal number are estimated. The estimation accounts for microphysical adjustments to the initial perturbation in N. For warm rain, d lnP/d lnN < −2aut/(aut + acc) is found, which depends on the rates of autoconversion (aut) and accretion (acc). Cirrus sedimentation susceptibility corresponds to the exponent of crystal sedimentation velocity with a value of −0.2. For mixed-phase clouds, several microphysical contributions that explain low precipitation susceptibilities are identified: (i) Because of the larger hydrometeor sizes involved, mixed-phase collection processes are less sensitive to changes in hydrometeor size than autoconversion. (ii) Only a subset of precipitation formation processes is sensitive to droplet or crystal number. (iii) Effects on collection processes and diffusional growth compensate. (iv) Adjustments in cloud liquid and ice amount compensate the effect of changes in ice crystal and cloud droplet number. (v) Aerosol perturbations that simultaneously affect ice crystal and droplet number have opposing effects.
  • Source:
    Journal of the Atmospheric Sciences, 73(12), 5003-5023
  • DOI:
  • ISSN:
    0022-4928;1520-0469;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1