Prognostic Precipitation in the MIROC6-SPRINTARS GCM: Description and Evaluation Against Satellite Observations
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Prognostic Precipitation in the MIROC6-SPRINTARS GCM: Description and Evaluation Against Satellite Observations

Filetype[PDF-9.40 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Advances in Modeling Earth Systems
  • Description:
    A comprehensive two-moment microphysics scheme is incorporated into the MIROC6-SPRINTARS general circulation model (GCM). The new scheme includes prognostic precipitation for both rain and snow and considers their radiative effects. To evaluate the impacts of applying different treatments of precipitation and the associated radiative effect, we perform climate simulations employing both the traditional diagnostic and new prognostic precipitation schemes, the latter also being tested with and without incorporating the radiative effect of snow. The prognostic precipitation, which maintains precipitation in the atmosphere across multiple time steps, models the ratio of accretion to autoconversion as being approximately an order of magnitude higher than that for the diagnostic scheme. Such changes in microphysical process rates tend to reduce the cloud water susceptibility as the autoconversion process is the only pathway through which aerosols can influence rain formation. The resultant anthropogenic aerosol effect is reduced by approximately 21% in the prognostic precipitation scheme. Modifications to the microphysical process rates also change the vertical distribution of hydrometeors in the manner that increases the fractional occurrence of single-layered warm clouds by 38%. The new scheme mitigates the excess of supercooled liquid water produced by the previous scheme and increases the total mass of ice hydrometeors. Both characteristics are consistent with CloudSat/CALIPSO retrievals. The radiative effect of snow is significant at both longwave and shortwave (6.4 and 5.1 W/m(2) in absolute values, respectively) and can alter the precipitation fields via energetic controls on precipitation. These results suggest that the prognostic precipitation scheme, with its radiative effects incorporated, makes an indispensable contribution to improving the reliability of climate modeling.
  • Source:
    Journal of Advances in Modeling Earth Systems 11(3), 839-860, 2019
  • Document Type:
  • Rights Information:
    CC BY-NC-ND
  • Compliance:
    PMC
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26