The Nearshore Heat Budget: Effects of Stratification and Surfzone Dynamics
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

The Nearshore Heat Budget: Effects of Stratification and Surfzone Dynamics

Filetype[PDF-5.55 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Geophysical Research: Oceans
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Temperature variability in the nearshore (from ≈6‐m depth to the shoreline) is influenced by many processes including wave breaking and internal waves. A nearshore heat budget resolving these processes has not been considered. A 7‐month experiment at the Scripps Institution of Oceanography Pier (shoreline to 6‐m depth) measured temperature and surface and cross‐shore heat fluxes to examine a nearshore heat budget with fine cross‐shore spatial (≈20 m) and temporal (5 day to 4 h) resolution. Winds, waves, air and water temperature, and in particular, pier end stratification varied considerably from late Fall to late Spring. The largest heat flux terms were shortwave solar radiation and baroclinic advective heat flux both varying on tidal time scales. The net heat flux is coherent and in phase with the nearshore heat content change at diurnal and semidiurnal frequencies. The binned mean heat budget has squared correlation R2=0.97 and best‐fit slope of 0.76. Including an elevated breaking wave albedo parameterization reduced the residual heat flux and improved the best‐fit slope. Baroclinic and barotropic advective heat fluxes have significant noise, and removing them from the heat budget improves the best‐fit slope when stratification is weak. However, when daily mean stratification is large, baroclinic advective heat flux dominates variability and is required to capture large (≈3 °C h−1) internal wave events. At times, large heat budget residuals highlight neglected heat budget terms, pointing to surfzone alongshore advection of temperature anomalies.
  • Source:
    Journal of Geophysical Research: Oceans, 124(11), 8219-8240
  • DOI:
  • ISSN:
    2169-9275;2169-9291;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1