U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Observations Of Nonlinear Internal Wave Run-Up To The Surfzone



Details

  • Journal Title:
    Journal of Physical Oceanography
  • Personal Author:
  • NOAA Program & Office:
  • Sea Grant Program:
  • Description:
    The cross-shore evolution of nonlinear internal waves (NLIWs) from 8-m depth to shore was observed by a dense thermistor array and ADCP. Isotherm oscillations spanned much of the water column at a variety of periods. At times, NLIWs propagated into the surfzone, decreasing temperature by ≈1°C in 5 min. When stratification was strong, temperature variability was strong and coherent from 18- to 6-m depth at semidiurnal and harmonic periods. When stratification weakened, temperature variability decreased and was incoherent between 18- and 6-m depth at all frequencies. At 8-m depth, onshore coherently propagating NLIW events had associated rapid temperature drops (ΔT) up to 1.7°C, front velocity between 1.4 and 7.4 cm s−1, and incidence angles between −5° and 23°. Front position, ΔT, and two-layer equivalent height zIW of four events were tracked upslope until propagation terminated. Front position was quadratic in time, and normalized ΔT and zIW both decreased, collapsing as a linearly decaying function of normalized cross-shore distance. Front speed and deceleration are consistent with two-layer upslope gravity current scalings. During NLIW rundown, near-surface cooling and near-bottom warming at 8-m depth coincide with a critical gradient Richardson number, indicating shear-driven mixing.
  • Keywords:
  • Source:
    Journal of Physical Oceanography, 48(3), 531-554
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha256:bf718ea603931698446ac1c298fac9e268c1937533458384dc3ca7e2dc9e9591
  • Download URL:
  • File Type:
    Filetype[PDF - 4.12 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.