The Competing Effects Of Breaking Waves On Surfzone Heat Fluxes: Albedo Versus Wave Heating
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

The Competing Effects Of Breaking Waves On Surfzone Heat Fluxes: Albedo Versus Wave Heating

Filetype[PDF-4.12 MB]



Details:

  • Journal Title:
    Journal of Geophysical Research: Oceans
  • Personal Author:
  • NOAA Program & Office:
  • Sea Grant Program:
  • Description:
    Depth-limited wave breaking modifies the heat flux in the surfzone relative to the inner-shelf (where waves are not breaking). Surfzone wave breaking generates heat through viscous dissipation (wave heating), but also increases surface foam coverage and albedo, thereby reducing solar heating, that is, cooling relative to the inner-shelf. These two competing breaking wave effects are quantified with a yearlong experiment at the Scripps Institution of Oceanography Pier. Cross-shore averaged surfzone albedo estimates were more than three times higher than inner-shelf albedo, reducing the yearly averaged surfzone water-entering shortwave radiation by 41 W/m2 relative to the inner-shelf. Surfzone breaking wave dissipation added an additional yearly averaged 28 W/m2 relative to the inner-shelf. The albedo-induced solar heating reduction in spring, summer, and fall was usually greater than the wave heating. However, in winter, large waves and relatively weak shortwave solar radiation (due to both lower top of the atmosphere solar radiation and clouds) resulted in a nearly equal number of days of breaking wave-induced heating or cooling. These two heat flux terms are coupled via wave breaking dissipation. Averaged over the surfzone, the albedo-induced solar radiation reduction is linearly related to the downwelling solar radiation and is independent of wave height. Consequently, the albedo-induced cooling to wave heating ratio is a function of breaking wave height to the −3/2 power, allowing evaluation of the relative importance of these terms in other geographic regions.
  • Keywords:
  • Source:
    JGR Oceans 123(10): 7172-7184
  • DOI:
  • Sea Grant Document Number:
    CASG-R-18-037
  • Document Type:
  • Funding:
  • Place as Subject:
  • Rights Information:
    CC BY-NC-ND
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1