Automated High-Resolution Bathymetry from Sentinel-1 SAR Images in Deeper Nearshore Coastal Waters in Eastern Florida
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Automated High-Resolution Bathymetry from Sentinel-1 SAR Images in Deeper Nearshore Coastal Waters in Eastern Florida

Filetype[PDF-14.35 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Remote Sensing
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Synthetic aperture radar (SAR) imagers are active microwave sensors that could overcome many challenges of passive optical bathymetry inversion, yet their capacity to yield accurate high-resolution bathymetric mapping is not studied sufficiently. In this study, we evaluate the feasibility of applying fast Fourier transform (FFT) to SAR data in coastal nearshore bathymetry derivation in Florida’s coastal waters. The study aims to develop a robust SAR bathymetry inversion framework across extensive spatial scales to address the dearth of bathymetric data in deeper nearshore coastal regions. By leveraging the Sentinel-1 datasets as a rich source of training data, our method yields high-resolution and accurate depth extraction up to 80 m. A comprehensive workflow to determine both the wavelength and peak wave period is associated with the proposed automated model compilation. A novel contour geometry-based spectral analysis technique for wavelength retrieval is presented that enables an efficient and scalable SAR bathymetry model. Multi-date SAR images were used to assess the robustness of the proposed depth-retrieval model. An accuracy assessment against the GMRT data demonstrated the high efficacy of the proposed approach, achieving a coefficient of determination (R2) above 0.95, a root-mean-square error (RMSE) of 1.56–10.20 m, and relative errors of 3.56–11.08% in automatically extracting the underwater terrain at every 50 m interval. A sensitivity analysis was conducted to estimate the uncertainty associated with our method. Overall, this study highlights the potential of SAR technology to produce updated, cost-effective, and accurate bathymetry maps of high resolution and to fill bathymetric data gaps worldwide. The code and datasets are made publicly available.
  • Keywords:
  • Source:
    Remote Sensing, 16(1), 1
  • DOI:
  • ISSN:
    2072-4292
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1