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Abstract: Synthetic aperture radar (SAR) imagers are active microwave sensors that could overcome
many challenges of passive optical bathymetry inversion, yet their capacity to yield accurate high-
resolution bathymetric mapping is not studied sufficiently. In this study, we evaluate the feasibility
of applying fast Fourier transform (FFT) to SAR data in coastal nearshore bathymetry derivation in
Florida’s coastal waters. The study aims to develop a robust SAR bathymetry inversion framework
across extensive spatial scales to address the dearth of bathymetric data in deeper nearshore coastal
regions. By leveraging the Sentinel-1 datasets as a rich source of training data, our method yields high-
resolution and accurate depth extraction up to 80 m. A comprehensive workflow to determine both
the wavelength and peak wave period is associated with the proposed automated model compilation.
A novel contour geometry-based spectral analysis technique for wavelength retrieval is presented
that enables an efficient and scalable SAR bathymetry model. Multi-date SAR images were used
to assess the robustness of the proposed depth-retrieval model. An accuracy assessment against
the GMRT data demonstrated the high efficacy of the proposed approach, achieving a coefficient
of determination (R?) above 0.95, a root-mean-square error (RMSE) of 1.56-10.20 m, and relative
errors of 3.56-11.08% in automatically extracting the underwater terrain at every 50 m interval. A
sensitivity analysis was conducted to estimate the uncertainty associated with our method. Overall,
this study highlights the potential of SAR technology to produce updated, cost-effective, and accurate
bathymetry maps of high resolution and to fill bathymetric data gaps worldwide. The code and
datasets are made publicly available.

Keywords: satellite-derived bathymetry (SDB); synthetic aperture radar (SAR); Sentinel-1; swell
waves; fast Fourier transform (FFT); dispersion relation; high-resolution SDB; deep-water bathymetry

1. Introduction

The world population in coastal regions has increased drastically over the last few
decades, which emphasizes the need for effective coastal zone management strategies.
These measures rely on an in-depth understanding of the coastal processes within the
nearshore region, which, in turn, is dependent on coastal bathymetry. Accurate bathymet-
ric data are vital for various types of applications and studies, including safe navigation, the
identification of erosion-prone areas, coastal defense, monitoring morphological changes,
recreation, etc. [1]. The great demand for up-to-date bathymetric maps of coastal waters
has enhanced the necessity to explore feasible techniques for retrieving data that enable the
rapid assessment of nearshore bathymetry at an affordable cost. Traditional bathymetry re-
trieval mechanisms are cost-intensive, usually requiring survey vessels (e.g., echo-sounding
techniques) or sophisticated instrumentation (e.g., airborne lidar bathymetry (ALB)).

Spaceborne remote sensing techniques provide a low-cost and robust bathymetry
inversion alternative that overcomes inherent challenges associated with conventional
methods, such as the inaccessibility of remote areas, limited area coverage, excessive
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financial budget, and low repeatability. According to the International Hydrographic
Organization (IHO), seafloor data acquired by satellite imagery, widely known as satellite-
derived bathymetry (SDB), can be identified as a potential technology to fill the bathymetric
data gaps worldwide [2]. The development of SDB as a future global tool would boost the
blue economy and aid the industrial and scientific communities. Consequently, images
acquired from satellite remote sensing techniques have been increasingly used to estimate
coastal bathymetry [3-8].

The main spaceborne techniques that enable frequent and spatially dense bathymetry
retrieval originate either from optical sensing (e.g., multispectral imaging) or synthetic
aperture radar (SAR) imaging instruments. The depth limit of optical sensor technology
depends on the penetrative capability of each wavelength and site conditions, such as
water transparency and chlorophyll content. In theory, the radiation from 0.48 to 0.60 um
can penetrate clear and calm ocean water only up to 15-20 m [9], with the best detectability
occurring at or below approximately 10 m [10,11]. Further, optical-based methods are
impractical, with cloudy and rainy conditions limiting their suitability to cloud-free scenes,
capturing moderate-to-high water clarity in coastal regions [12].

In this context, bathymetry beyond the optical methods” extinction depth needs to be
retrieved using a different form of remotely sensed data. A synthetic aperture radar (SAR)
is an active microwave remote sensor that enables the imaging of the Earth, unimpeded by
adverse weather conditions, and night-time image acquisition [13], which has been widely
used for many water-based applications, including flood mapping [14-16]. As a result of
the SAR signals’ incapability to penetrate beyond a few centimeters into seawater and reach
the seabed [17], a high-resolution 2D image of the sea surface is produced. Bathymetry
estimates from SAR technology rely on indirect processes, sensing seabed morphology via
the influence it causes on the sea surface [18]. Further, unlike optical imaging techniques,
SAR techniques do not rely on radiation transmission through the water column. Thus,
SAR-based bathymetry inversion is ideal for turbid waters [19] and covers depth domains
between 10 m and 70 m depending on the sea state and acquisition quality [20].

In general, an SAR image capturing the ocean cannot be categorized as a picture of the
true sea surface since the imaging mechanism of the sea surface by SAR is non-linear [18].
However, linear imaging can be assumed under specific cases, such as non-extreme wind
speed or sea states, the absence of strong currents, and being within the wave shoaling
zone that characterizes swell patterns using wavelengths [20]. Under these circumstances,
an SAR image reflects a single realization of the free surface of the ocean, and the imaged
waves can be assumed to be original swell wavelengths [12].

One of the SAR-based methods for detecting water depths is based on these swell
waves, which can be characterized by variations in both the wave direction and wavelength
when propagating from deep to shallow water. These swell-wave patterns imaged on SAR
data are processed to infer bathymetry [20,21]. The wavelengths are estimated from the
pattern of regularly spaced wave crests and troughs, while the depths are derived using
the wave dispersion relationship, which holds until the point of wave breaking in the surf
zone. It should be noted that the swell patterns-based method cannot be applied in deeper
waters, with the offshore cut-off condition being at a water depth higher than about half
of the wavelength [6]. Furthermore, SAR-based bathymetry estimation has proven to be
ideal in site-specific conditions such as high-energy wave regions with constraining factors,
such as the intensity of swells [22]. Swell-based bathymetry inversion is limited by two
main factors, namely sea conditions (swell availability) and SAR data quality (imaged swell
patterns). As strong surface currents can impose variations in swell phase velocity and
wavelength [23], SAR images are useful in estimating the seafloor depth only if acquired
under a weak current velocity [18]. Further, shorter incidence angles of SAR images are
desirable to increase the backscattering from the sea surface and to reduce the unwanted
smearing effects [13].

Fast Fourier transform (FFT) [20,21,24] is frequently used to analyze SAR datasets to
estimate the wavelengths. FFT is a technique that decomposes a signal (image) in a special
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(e.g., spatial) domain into its constituent frequency components, enabling the identification
of any regular periodicity in the input signal (image). Wavelet analysis is another alternative
technique that analyzes the SAR subsets in different scales and angles, in which scales and
angles correspond to the wavelength and wave direction, respectively [25]. From the peak
values in all the scale-angle component images, the dominant wavelength and the direction
are obtained [26]. A study by Ma et al. 2021 [26] provides an example of wavelet-based
SAR bathymetry, in which wavelet resolution is varied by adjusting the size of the wavelet
box and the scale resolution. Similarly, 2D-FFT is used to generate a directional image
spectrum from which the dominant wavelength and its direction are acquired. These
wave parameters can be identified by finding the peak location of the 2D spectrum [10,15].
Even though several studies adopted FFT for wavelength estimation, a thorough analysis
procedure to determine peak frequency-intensity locations is lacking. This study attempts to
address this by introducing a novel contour geometry-based wavelength-retrieval algorithm
that enables automation and efficiency.

The all-weather and all-day imaging capacity of SAR has a significant advantage over
other satellite sensors and has opened a new door to the SDB community. SAR nearshore
bathymetry prediction is constantly improving, with many researchers exploring new
methods and approaches to increase accuracy. Most SAR-based bathymetry or underwater
topography studies incorporate estimating spectra-driven wave parameters using FFT
outputs. Traditionally, the size of the FFT analysis cell dictates the final resolution of SAR
bathymetry maps, which lies around 1 km per pixel or worse [20,27,28]. As a result, the
ocean floors beyond 20 m in depth have so far only been mapped to a resolution of a few
kilometers using SAR images, and these coarse resolutions are often inadequate for many
applications, including habitat mapping, tsunami hazard evaluation, navigation, ocean
circulation, and climate change studies [29]. This necessitates the development of new SDB
methods delivering finer resolutions with high accuracy. The present study provides new
insights into deriving high-resolution bathymetry, encompassing incremental strides in the
field of FFT-based SAR bathymetry. In addition, this study has attempted to bridge the
gap between different imaging domains of optical bathymetry and SAR bathymetry by
generating high-resolution SAR bathymetry products in deeper nearshore areas that can
facilitate more detailed underwater morphology maps of the entire nearshore region.

Until the launch of the Sentinel-1 satellites, SAR images were acquired only by com-
mercial satellites, limiting their availability and flexibility, which is evidenced by the small
number of studies on SAR bathymetry inversion. The Sentinel-1 constellation offers high-
resolution, openly accessible SAR data that are acquired systematically and with long-term
continuity. Therefore, they constitute a reliable and durable data source that can effectively
be used to infer water depths in coastal waters at a minimal cost. The use of a time series of
Sentinel-1 images has been investigated in a few recent studies [6,19], with reasonably im-
proved results. Demonstrating the feasibility of SAR technology in retrieving bathymetry
around different parts of the world remains a topic of increased interest, emphasizing
varying degrees of improvements to the established algorithms.

In accordance with the emerging trend in SDB technology toward the development
of automatic processes and robust methodologies, this study introduces an automated
bathymetry extraction framework over extensive deep coastal water stretches, emphasizing
novel wavelength and wave period-retrieval algorithms. The effectiveness of the proposed
model was assessed using multiple SAR images for consistency. With these new additions
to the FFT workflow, a more rigorous and efficient framework is proposed to generate
high-accuracy and fine-scale bathymetric estimates from SAR.

2. Study Region and Dataset

Florida’s coastal region has one of the highest concentrations of coastal communities
in the United States, and its nearshore coastal waters are the most valuable (more than USD
30 billion in revenue per year) with the highest recreational use. The eastern coast of Florida
consists of a narrower continental shelf with gradual depth gradients (Figure 1). There
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is a critical need for seafloor maps in this part of Florida, and cost-effective technologies
to rapidly assess seafloor changes would be highly beneficial to many commercial and
academic communities, boosting the blue economy of the state. The long ocean swell waves
from the North Atlantic exhibit a predominantly southbound wave direction in this part
of Florida, with refraction leading to waves aligning with the shoreline as they approach
the coast. The average significant wave height along this region varies from 0.9 m to 1.3 m,
with minimum wave heights occurring during summer months (e.g., 0.59 m to 0.84 m) and
maximum wave heights predominating during winter months (e.g., 1.1 m to 1.55 m [30].
The regional average wave periods lie in the range of 7 s to 9 s in this area [30].
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Figure 1. Location of the study region in Eastern Florida coastal waters in the United States (together
with the depth classes derived from the GMRT profile including the transect orientation from 1 to 40
(transect 1 is the southernmost and transect 40 is the northernmost).

The eastern Florida continental shelf contains a diversified region with various terrain
types such as sand flats, ridge fields, coral reefs hummocky topography, etc., and geomor-
phological features like storm bars, bypass bars, and diabathic channels, etc., based on
the geomorphological studies carried out by Fink et al. [31,32] along the Atlantic coast of
Florida. Further, this area satisfies three of the most important traits of being able to apply
the SAR bathymetry inversion using FFT methods. These characteristics include having a
swell-wave regime, an extended nearshore region of depths below 100 m, and a negligible
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effect from currents (e.g., the current velocity is less than 0.05 m/s) [19]. The study site
was divided into depth classes of 5-20 m, 2040 m, 40-60 m, 60-80 m, and 80-100 m, as
depicted in Figure 1.

2.1. Sentinel-1 SAR Images

In the present study, Sentinel-1A, which was launched in 2014 and carries a C-band
payload of 5.405 GHz, was used to gather SAR data to retrieve the bathymetry of the study
region. From the available modes of data acquisition, an interferometric swath mode (IW)
with a spatial pixel resolution of 10 m was used. The main challenge for the successful
adaptation of SAR bathymetry is retrieving SAR images with visually identifiable wave
patterns that can be attributed to radar image technology, as described in Section 3.1. The
Sentinel-1 image tile with the identifier A9E4 was selected, which covers the eastern Florida
region (Figure 2). The coastal sector between Wabasso Beach (northern boundary) and
Jensen Beach (southern boundary) was used as the study site, which has an extended region
of depths below 100 m. A boundary condition of depth of 100 m was set to define the wave
shoaling region, which encompassed a total area of 3120 km? area bounded by a 70 km
shoreline from one side.
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Figure 2. Orientation of Sentinel-1 tile A9E4 covering eastern Florida and the zoomed-in version of
imaged wave patterns within the red-colored enclosed area.

The swell pattern visibility on SAR imagery is a constraining factor in selecting the best
Sentinel-1 images for the analysis. Images with sea surfaces require distinct characteristics
of surface waves to be able to correlate the wave behavior with the seafloor morphology [20].
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Image selection was performed on the Sentinel Hub EO Browser using an AOI and VV-
polarized image (decibel gamma0) preview as the filtering tool. A set of two images
(Table 1) fulfilled these criteria, and their Level-1 Ground-Range Detected (GRD) products,
which are multi-looked and projected to the ground range using an Earth ellipsoid model
(WGS84), were downloaded from the Copernicus Open Access Hub.

Table 1. Specifics of the selected two Sentinel-1 images of image A and image B.

Attribute

Image A Image B

Acquisition Date and Time

18 November 2019, 23:20 UTC

(Universal Time Coordinated) 10 November 2021, 23:21 UTC

Sensor Mode IW (Interferometric Wide) w
Product Type and Resolution Class GRDH (Ground-Range Detected, High GRDH
Resolution)

1 (Focused, Detected, Multi-Looked,

Processing Level Ground-Range Projected) !
Spatial Resolution (m) 10 10
Pass Descending Descending
Polarization Single\)é Xigﬁ;gca;izgnsmit’ Single VV
Product Unique Identifier A9E4 A9E4

2.2. Auxiliary Data

Two forms of auxiliary data that are openly accessible are used in this study. The
nautical charts available in this area were used to acquire the reference depth data required
for local wave period estimation. An Electronic Navigational Chart (ENC) corresponding
to US3FL30M, downloaded from NOAA, was used for this purpose. This ENC is a geo-
referenced NOAA nautical chart with a scale of 1:466,944 and is available in S-57 format
(https:/ /www.charts.noaa.gov (accessed on 4 August 2023)). The 000 file, which contains
3D vector data, was converted to a grid elevation model using Global Mapper v22. For
validation purposes, Global Multi-Resolution Topography (GMRT) grid data were selected
as the ground truth. GMRT synthesis is a multi-resolution compilation of edited multibeam
sonar data gathered by various sources, which are processed and gridded by the Marine
Geoscience Data System (MGDS) team and delivered as a single continuously updated
global elevation dataset with a resolution of 100 m [33].

3. Methodology
3.1. SAR Ocean Imaging

Bragg waves provide the small-scale surface roughness required for the backscatter-
ing of the microwaves [34]. Thus, the presence of Bragg waves on the sea surface is a
prerequisite for the wave features to become visible on radar images. The intensity of
SAR backscatter from the ocean surface has a positive correlation with the ocean surface
roughness. Bragg scattering constitutes the dominant backscattering mechanism for inci-
dence angles(0;) between 20° and 60° [20]. The Bragg waves, which are in the order of SAR
wavelengths, can be expressed by

Ap = 0.5, sin; 1)

where A, is the radar wavelength and Ap is the sea surface wavelength.

The SAR imaging capability of the ocean waves is governed by three modulation
mechanisms: tilt modulation, hydrodynamic modulation, and velocity brunching modula-
tion. Out of these three, the velocity brunching is a non-linear mechanism that arises due
to the motion of ocean surface waves relative to the direction of the SAR satellite [35]. The
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azimuth-traveling component of the orbital motion of the waves (parallel to satellite flight
direction is the azimuth direction) enables SAR to image these waves through velocity
brunching phenomena [19]. Based on this velocity brunching modulation, a threshold SAR
wavelength called the azimuth cutoff wavelength can be defined as:

Lmin:RVH/V (2)

where R is the slant range of the observed wave, V is the SAR platform velocity, and H is
the significant wave height.

For SAR to image and detect the swell patterns of any azimuth traveling waves, their
swell wavelengths need to be greater than this cutoff wavelength. This condition is one
of the prerequisites to assume that the SAR imaged wavelengths are truly the original
swell wavelengths [6] and can be identified as a major limiting factor of the observation
of ocean waves by an SAR satellite [36]. Therefore, to perform an SAR-based analysis of
shallow-intermediate coastal depths (which are characterized by shorter wavelengths), the
Ly,in needs to be as low as possible.

3.2. Bathymetry from Swell Waves

The two-dimensional FFT of an SAR subset of N x N pixel size gives a 2D image
spectrum [37]. If the selected sub-image presents a sinusoidal-like dominant element, then
its Fourier representation will depict a high peak of energy at the frequency of such a
component [21]. The transformed image in the frequency domain needs to be analyzed to
identify symmetrical sharp peaks on either side of the origin, from which the wavelength
and wave direction of the dominant sea waves in each subscene are estimated.

After locating the sharp peaks on the transformed FFT representation, analytical
relations are used to estimate the wavelength (1) from the inverse of the distance separating
the two peaks (Equation (3)), while the wave direction (f) is estimated from the orientation
of the line connecting the two peaks (Equation (4)) [12].

N szezl Size : 3)
A
() (%)
_ Ay
0= arctanB (4)

where N is the number of rows of pixels, M is the number of columns (for a square pixel
N = M), Ax is the number of columns between the two identified sharp peaks, and Ay is
the respective difference in the number of rows.

Linear dispersion relation is used to calculate the bathymetry in moderately deep or
shallow water. Derived from linear wave theory, the linear dispersion relation describes the
swell-wave propagation and the relationship between the wavenumber, wave period, and
wavelength. The shallow water depth (/) can be retrieved from the rearranged linear dis-
persion relation (Equation (5)) in which the two wave parameters, namely local wavelength
(A) and peak wave period (T}), are needed [12].

A 27TA
h ()\, TP) - Eatﬂnhngz (5)
3.3. Estimation of Wave Parameters

The two main maritime parameters required for the bathymetry prediction were
retrieved locally using rigorous and repetitive analytical procedures.

3.3.1. Wavelength from FFT

The distance between two identical points on successive waves (e.g., crest to crest
or trough to trough) is defined as the wavelength. Wavelength retrieval plays a vital role
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in predicting bathymetry in deeper nearshore coastal waters. Inaccuracies in wavelength
retrieval lead to larger bathymetry deviations in deeper waters with longer waves than in
shallower waters with shorter waves [27]. There are two main FFT methods exploited by
recent studies, namely wave-tracing mode (transects along the wave propagation direction)
and fixed-grid mode (standard gridded approach). In this study, due to the distinctive
wave behavior with refraction within the study region, a wave-tracing approach is utilized.
A total of forty cross-shore transects at equal intervals were generated along the 70 km
shoreline of the study area. The transects were digitized perpendicular to the incoming
wave crests imaged on the SAR. In most SAR studies, the SAR subsets and thus local
wavelengths are provided for coarse, spatially non-overlapping grid cells. In contrast, the
SAR subset generation in this study was performed overlappingly to provide spatially
dense bathymetry to address the low resolution of bathymetry maps at these depths. SAR
subsets of 128 x 128 pixels were extracted every 50 m along these transects and used to
determine the dominant wavelengths. This was performed using the ArcPy library in
ArcGIS Pro v2.7.1.

Two-dimensional FFT was applied on each extracted SAR subset along each transect.
The FFT outputs demonstrate two clusters of high intensities located symmetrically on
either side of the origin (Figure 3). However, it is not straightforward to identify the peak
intensity in each cluster, as highlighted in Figure 3. It should be noted that the location of
the peak intensity is our target variable, rather than the magnitude of the highest intensity.
In analyzing these FFT plots, a robust method to consistently determine a representative
point for the location of the frequency with the highest intensity is needed.

Figure 3. FFT intensity spectrum representations of six selected SAR subsets. The enclosed sections
(red) are zoomed in and depicted in the bottom right of each image. These reveal the untidiness of
the high-intensity clusters from which the highest-intensity location must be identified.

As a solution, a contour plot of pixel intensities was generated for the frequency
domain representations. As a result, the FFT spectrum (Figure 4a) was divided into
contour blobs (Figure 4b) highlighting the intensity hotpots in a more pronounced manner.
This enables the high-intensity blobs on the FFT output to be isolated using an intensity
threshold. For this purpose, the steepest contour levels in each FFT plot were used to
identify the high-intensity blob (Figure 4c) while filtering out the lower-intensity regions. It
should be noted that on a FFT spectrum, a cluster is defined as a group of adjacent pixels,
while a blob is defined as an area bounded by a contour line.



Remote Sens. 2024, 16, 1

9o0f21

Peak
frequency
locations
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Figure 4. Frequency domain representation (a), contour geometry highlighting the high-intensity
blobs in yellow (b), and identified peak intensity locations using the centroid of these blobs marked
with red markers (c) in an example FFT output.

Since there is no exact point of peak intensity but a cluster of pixels with high intensity
in each isolated blob, it is imperative to determine an effective representative location for
the sharpest peak. The geometric centroids of the high-intensity blobs on the FFT image
spectrum were identified. The corresponding centroid on the closest blob is selected as the
representative highest intensity. Using the symmetrical centroids on either side of the FFT
origin, the wavelength for each SAR subset was estimated using Equation (3).

This algorithm is based on the contour geometry of the FFT subscene, which, in turn,
is dependent on the wave structure imaged on the analyzed SAR subset. It provided an
effective method to overcome the main hurdle in FFT workflow with regards to wavelength
estimation, facilitating an automated workflow and improving the efficiency of the pro-
posed method. MATLAB was used to perform the task of contour plot-driven dominant
wavelength estimation. A summary of the workflow is depicted in Figure 5.

SAR image

SAR subscene selection for

depths 10-100;
Contour geometry-based analysis Ppes m

Develop a series of cross-

2D FFT spectra of

shore transects
SAR subset

E DEM derived E
Extract SAR subsets (128128 E 1

Apply series of from nautical chart

contours pixels) at 50 m intervals

‘ Extract the nautical

Isolate the highest depth every 1km
frequency blobs RERE i R
subset Equation(7)
Locate the centroid
of the largest blob Equation(3) Dominant wavelength of ’ ‘ Peak wave period for every
SAR subset 1km length
Identify the peak engt

intensity points

i 2D FFT spectra for SAR

Apply linear dispersion

relation

GMRT
bathymetry grids | * '

Figure 5. Workflow of the methodology adopted in the present study, including the steps involved

in the determination of the dominant wavelength of the SAR subset and nautical chart-based peak
wave periods.
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3.3.2. Peak Wave Period from Nautical Charts

The wave period can be described as the time for successive wave crests to pass a
specific spatial point. The peak wave period (T),) denotes the wave period associated
with the most energetic waves in the wave spectrum at a specific point. The originating
wind fields often offer the momentum to the swell-wave regimes to navigate through
nearshore regions, varying the wave period locally. The minimum peak period threshold
(Tonin) describes the threshold that enables distinguishing the estimated swell wavelengths
belonging to shallow or deep waters, which is computed using the deep-water linear

dispersion relation [12]:
Tin = /27T A max /g (6)

where A;4x denotes the maximum detected wavelength.

The estimation of the peak wave period is a critical step in the water-depth deriva-
tion using linear wave theory. There are a few methods used in the recent literature to
determine the peak wave period. Wiehle et al. [27] adopted an iterative approach to
refine the peak-wave-period value using an initial water-depth value and the FFT tech-
nique. In Wiehle et al. [27], a range of peak-wave-period values was generated using
tanh~1(27tA/¢T?) < 11, and corresponding depth values were estimated. The depth
values yielded for each SAR subscene are compared against the reference depth, and a
root-mean-square deviation (RMSD) analysis was performed to decide on the optimal peak
wave period.

The in-situ measurements from wave buoys that are close to the observed area provide
one such option for peak-wave-period determination although it is not always possible
to have a wave buoy or historic data repository that can be queried even if wave buoys
are located nearby. Another method requires an initial guess for the reference depth
(hye f), which can be extracted from nautical charts or freely available sources like GEBCO
(available worldwide). The T) value can then be estimated using the linear dispersion
relation, as in Equation (7), similar to [12,28].

\/ znhref
T=4/2tA/ (gtanh </\>> (7)

In the present study, maintaining T, above the theoretical minimum T),,;, indicated
in Equation (6), it is estimated using the universally available nautical chart depths. This
procedure improves the operational validity and facilitates the evaluation of the preciseness
that can be replicated in regions without high-resolution bathymetry or even in remote
coastal areas. To account for local wave regime conditions, T, values were calculated at
1 km intervals along each transect using Equation (7). The T}, value is dependent upon
both the depth and the wavelength value, which, in turn, describes the local wave regime
at each location. The calculated T}, value at a location is then used to derive the bathymetry
within a 500 m proximity along the specific transect. This procedure was repeated for all
40 transects.

4. Results

The wavelength-estimation procedure underwent rigorous testing and parameter
optimization for the number of contour levels, the threshold value for isolating the high-
intensity blobs, and the selection of the best centroid out of neighboring centroids. As a
result, the optimal number of contour levels was determined to be 20. The threshold value
for isolating the high-intensity blobs was found to be the value of the highest contour level.
Finally, the best centroid out of neighboring centroids in each sector was determined to
be the centroid attributed to the largest blob closer to the origin. It should be noted that
the location of the highest intensity is our target variable, rather than the magnitude of the
peak intensity. As depicted in Figure 6, the frequency contour plot generated for the FFT
output yielded a representative value for the location of the peak intensity. The realization
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of the proposed approach in determining the accurate wavelengths enabled us to achieve
better accuracy for depth prediction.

Figure 6. Contour plots of the FFT outputs (left) and centroids of the high-intensity blobs (right) of
the FFT outputs shown in Figure 3. The centroids are marked using a red cross in each case. These
centroid locations are used as the representative locations of the highest intensities on FFT outputs.
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At some points in the spatial domain, a few calculated wavelength values revealed
sudden unrealistic changes, differing significantly from surrounding values. To rectify
the influence of these erroneous points, a moving mean wavelength value was adopted
along each transect to reduce the effect of outliers. The proposed automated model for
wavelength retrieval yielded results that are in line with the swell-wave regime with large
wavelengths occurring in the open ocean, while shoaled and refracted shallow water waves
generated modest wavelengths (Figure 7). This trend of descending wavelengths when
moving from offshore to onshore is evident along all forty transects.
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Figure 7. Calculated wavelength variation along selected four transects—12, 21, 29, and 30—for
image A (top) and image B (bottom).

The wavelength and seafloor depth have a positive correlation. The gradual incre-
ments evident in the wavelength reflect this relationship with the underwater landscape
when moving from shallow to deep waters. The bumps and anomalies that are present in
the otherwise deepening seabed could be observed through the sudden dips and peaks of
wavelength profiles (Figure 7).

While the estimation of wavelength is performed by the aforementioned method, the
second parameter of the peak wave period is estimated using the nautical chart readings,
which cover an extensive coastal water domain of 3120 square kilometers. The wave period
in such a large coastal setting encompasses many swell-wave groups, and the wave period
is given as a value range rather than a single value in many studies in the literature [38].
Accordingly, spatially attributed T}, values could be more reliable and effective to suit the
local swell-wave regime characteristics in such a large spatial extent, especially when our
goal is to achieve high-resolution seafloor depth estimation. The estimated T}, values lie in
the range of 11-16 s when neglecting the shallowest region within which the dispersion
relation does not hold. The wave buoy at Station 41114-Fort Pierce, FL, is the closest
to the study site. Images A and B were captured at 2320 h on 18 November 2019 and
10 November 2021, respectively. From the National Data Buoy Center hosted by NOAA,
Station 41114 records a dominant wave period (DPD) (the period with the maximum wave
energy) of 13.33 s and 14.12 s at 2330 h on respective days. These wave buoy readings
fall within the estimated T, value range, reflecting the credibility of the developed wave



Remote Sens. 2024, 16, 1

13 of 21

period-estimation procedure. Further, the effect of T, on the bathymetry estimation is
quantified and included in Section 5.1.

The depth values were deduced using the adjusted linear dispersion relation of
Equation (5) and compared against the GMRT profile. The performance of the model
is then evaluated along each transect by measuring the root-mean-square error (RMSE)
and relative percentage error. The depth profiles acquired using SAR images A and B
along four selected transects that represent the entire depth domain of the study area are
illustrated in Figures 8 and 9, respectively. The overall inferred underwater topography
agrees well with the reference GMRT data. The analysis of SAR-predicted bathymetry for
depths below 60 m indicates that the local variations in depth are reproduced well. It is also
evident from Figures 8 and 9 that the depth prediction along both steep (transect 12) and
gradually varied (transects 29 and 30) underwater terrains remains consistently accurate.
The figures show that the accuracy of depth prediction decreases with increasing depth.
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Figure 8. Comparison between the predicted and observed bathymetry for transects 12, 21, 29 and
30 using image A.

The estimated SAR bathymetry and the error distribution, in comparison with refer-
ence GMRT data for both SAR images A and B, are depicted in Figure 10. It should be noted
that the inferred bathymetry from SAR data within the depth domain of 10-100 m is in
good agreement with the GMRT depth grids. The trend of the seabed deepening with the
distance from the shoreline is captured, which aligns with different depth classes witnessed
within the study region. Figure 10 and Table 2 also indicate that, overall, image A produces
better accuracy than image B.
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Figure 9. Comparison between the predicted and observed bathymetry for transects 12, 21, 29 and
30 using image B.

Table 2. Error metrics corresponding to each depth class for images A and B.

Image A Image B
Depth Class (m)
RMSE (m) Relative Error (%) RMSE (m) Relative Error (%)
5-20 1.90 10.40 1.99 10.89
20-40 1.56 4.47 1.72 4.78
40-60 2.40 3.56 3.09 4.32
60-80 9.67 10.61 10.20 11.08

Each transect runs through the entire nearshore region, covering depths of 5 m to 100 m.
To better evaluate model performance at different depth domains, a quantitative analysis
of the results for the depth classes introduced in Section 2 is presented in Table 2. The
RMSE and relative percentage error are used to measure the performance of the developed
method. Itis evident that the RMSE values reflect consistently high accuracy up to the 60 m
depth limit, beyond which the accuracy decreases with increasing depth. This also reveals
that the relative error percentages are low (0-5%) for both the mid-depth classes of 20-40 m
and 40-60 m. Consequently, the depth range of 20-60 m could be interpreted as the most
optimal region for SAR bathymetry in the study area.
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Figure 10. SAR bathymetry (a), ground-truth (b), and prediction error (c) maps for images A and B
along all 40 transects using the proposed method.

Figure 11 illustrates scatter plots of predicted and observed water depths for all
31,200 points along all the transects. The points were color-coded according to the depth
classes introduced in Table 2. The coefficients of determination R? are 0.96 and 0.95 for
image A and image B, respectively, indicating a strong correlation. An underprediction
tendency is evident across all four depth classes, while the prediction accuracy has been
reduced substantially beyond the depth of 60 m. Overall, considering the large sample of
data points, the results are consistently accurate for these deep coastal regions.
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Figure 11. Predicted—measured plots for 31,200 data points along all 40 transects put together
for images A and B highlighting the color-coded depth classes. The black line represents the

predicted = measured graph. The R? values considering all 31,200 data points covering the entire
0-80 m depth range are 0.96 (image A) and 0.95 (image B).
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5. Discussion

Only a limited number of studies have addressed SAR bathymetry estimation so far,
and the majority of them used the FFT spectrum analysis. An FFI-based SAR bathymetry
inversion study by Pleskachevsky A. et al. in 2011 [12] achieved 15% accuracy for depths
of 20-60 m. A study by Brusch S. et al. in 2011 [20], using TERRASAR-X data, yielded 5 m
errors for 72% of the validation entries. Wiehle S. et al. in 2019 [27] yielded RMSD values of
6.5m, 6.7 m, and 7.7 m for water depths of 10-20 m,20-30 m, and 30-40 m, respectively,
using TerraSAR-X images and an FFT approach. More recently, Huang L. et al. in 2022 [28]
yielded an MAE of 2.9 m and an R? of 0.93 using multi-source SAR images, finding that
SAR resolution plays a more vital role than its polarization mode in bathymetry derivation.
The accuracy levels obtained in this study are in line with or better than those achieved in
the abovementioned previous SAR studies. Moreover, the best resolution for current SAR
bathymetry obtained using FFT analysis is 320 m [6] and 500 m [21]. Thus, the improved
resolution of 50 m along transect lines within these challenging deep coastal areas can be
identified as a big stride in SAR bathymetry generation.

The present study serves as the first to investigate a high sampling rate like a 50 m
interval for FFT-derived wavelength extraction and led to high-resolution bathymetry
retrieval. The derivation of the predominant wavelength in successive SAR subsets is
facilitated by an automatic peak intensity identification algorithm. It should be noted that
the high-intensity blob geometries exhibit distinctive shapes on FFT outputs descendant
from consecutive SAR cells, thus leading to the most fitting estimate for the dominant
wavelength. The robustness of this technique is tested through its application over a vast
depth range that spans from 5 m to 80 m. This strengthens the adaptive characteristic of
the proposed contour geometry-driven wavelength-retrieval algorithm, which offers more
flexibility and scalability to SAR bathymetry inversion in deeper nearshore coastal regions.

The contour geometry-based wavelength-retrieval algorithm applied to the FFT has
improved both the efficiency and accuracy of the SAR-based bathymetry-estimation proce-
dure. Most FFT-based SAR bathymetry studies provide an insufficient analysis of the peak
location derivation in determining the dominant wavelength. Pereira et al. [21] developed
an algorithm that provides a scale of the dominance of the identified wave based on the
sharpness of the peaks on the FFT domain. From the results of this study, due to the prox-
imity of the peak intensity pixels, they tend to develop an inter-connected geometry that
could be isolated to find the best corresponding point of the peak intensity. The proposed
approach associating the contour geometry within the FFT output is a novel technique that
addresses the lack of clarity and insufficient depth of analysis in the determination of peak
frequency-intensity locations, which leads to more robust wavelength derivation.

The proposed methodology is suited to deriving the wavelengths and peak wave
periods of local swell-wave regimes in nearshore coastal settings. The coastal depths at
which the swell waves interact with the seabed would provide the optimal region for the
method to deliver better depth prediction. The depth inversion was best at the interval of
20-60 m, consistently producing highly accurate bathymetry prediction across two SAR
images. The accuracy of the depth prediction, expressed as a relative accuracy, was found
to be relatively low in the shallowest and the deepest depth classes in Table 2. These
two depth domains coincide with the wave-breaking zone and deep sea, respectively,
within which the linear wave theory does not hold anymore. When the propagating waves
encounter the shallow areas, they rear up, resulting in wave breaking. From the point of
wave breaking, the linearity in wave theory does not hold, thus leading to inferior results
for depths between 5 and 15 m. However, the RMSEs of 1.90 m (image A) and 1.99 m
(image B) are reasonable for a 5-20 m depth and are in line with SDB studies focused on
optical methods. Therefore, a fusion of optical and SAR can be recommended for the 5-20 m
depth range, as many studies suggest an extinction depth for optical SDB of 10-20 m [2,5].

Overall, this study emphasizes several advantages over the existing literature on SAR
bathymetry. The most prominent is the automated workflow to generate high-resolution
bathymetry beyond 20 m deep coastal areas. Further, this study provides an effective
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peak intensity-locating algorithm to enable efficient wavelength derivation. The proposed
peak-wave-period algorithm, which provides more depth-appropriate estimates, would be
more effective in a large coastal setting compared to the existing methods of using a single
value or a value range for T),.

This study can be further improved to establish the feasible depth domain with SAR
technology more precisely. Bian X. et al. 2020 [19] show that there is a minimum and
maximum detectable depth range for SAR that, in turn, is a function of the type of the
SAR signal (L band [19], S band [39], C band [26], X band [20], etc.), maximum detectable
swell wavelength, and swell-wave period. However, there is a potential to improve these
findings using the sub-surface variations detected by high-spatial-resolution bathymetry
maps facilitated by this study. Wave breaking marks the end of the shoaling zone within
the nearshore region, which can be digitized precisely. This boundary line further provides
the onshore limit of SAR bathymetry, thus informing the boundaries of the surf zone
within which the wave action is expected to be most turbulent and dynamic and thus
difficult to be predicted by SDB in general. This could also be replicated in demarcating the
offshore shoaling zone in a more precise manner. Furthermore, these findings will aid in
the numerical modeling of cross-shore sediment dynamics within the nearshore region [40].

The work in the present study only used openly accessible Sentinel-1 images and
nautical chart data; thus, the bathymetry generation can be reproduced in other regions of
the world with minimal cost. The results reveal that the proposed method is capable of
generating high-resolution bathymetry with high accuracy and consistency over a large
and diversified coastal region. Additionally, the automation approach developed in this
study would certainly be the first step in improving the resolution and accuracy levels of
FFT-SAR bathymetry. Further, it would pave the way forward for scalable SAR bathymetry,
with minor adjustments to suit specific study areas.

5.1. Sensitivity Analysis

A sensitivity analysis is performed to evaluate the proposed model’s overall un-
certainty. Sensitivities associated with both the peak wave period and wavelength are
estimated using a combination of typical depth and wavelength combinations. An aver-
age peak wave period of 15 s is used throughout, while linear dispersion relation-based
wavelengths were calculated for each depth. The results are highlighted in Figure 12
(T sensitivity) and Figure 13 (A sensitivity). In each depth column in Figure 12, the depth
change (Ah) was calculated for incremental T), keeping the wavelength constant. Similarly,
in Figure 13, Ah was calculated for incremental A, keeping the peak wave period constant.
The horizontal axis provides the depth, and the vertical axis corresponds to the incremental
change of T, or A, while the sensitivity of the initial depth (Ah) is color-coded within
each cell. Figures 12 and 13 reveal that the sensitivity to the T, or A adjustments increases
with the water depth. For an uncertainty of 4% (0.6 s) in T,, deviation, a water depth of
26.8 m (—3.2 m) is obtained for a 30 m depth. Thus, a 4% error in wave period is translated
to a 10.6% error in water-depth calculation at a 30 m depth. In contrast, a 4% error in
wave period is translated to a much larger 15.6% error in water-depth estimation at a 60 m
depth. Therefore, the uncertainty arising from the wave period increases with increasing
water depths. Accordingly, an uncertainty of 4% (10 m) in A deviations results in 11.0%
and 12.6% water-depth errors at 30 m and 60 m depths, respectively. The findings of this
sensitivity analysis are in agreement with Wiehle et al. [27]. According to Wiehle et al. [27],
the RMSE of depth estimation increases by 2.4 m if the period is varied by + or —0.5 s from
the optimal T}, value, citing it to be a crucial step for retrieving accurate bathymetry esti-
mates. Bian et al. [19] found that the water depths derived from linear dispersion relation
are most sensitive to the peak wave period and moderately sensitive to the wavelength.
Subsequently, further studies to estimate the effect of SAR image quality, wave parameters,
and sea conditions on SAR bathymetry are suggested.
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Figure 12. Sensitivity analysis for T, at each water depth. The values listed and the colors refer to
the depth change for each incremental T}, (vertical axis) at different depths (horizontal axis).
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Figure 13. Sensitivity analysis for A at each water depth. The values listed and the colors refer to the
depth change for each incremental A (vertical axis) at different depths (horizontal axis).

The quality of SAR images is the main factor that influences the prediction capacity of
the proposed model. The model developed does not inherently detect the non-sea state
signals and SAR image distortions produced by short wind waves or breaking waves. Such
an SAR algorithm was utilized in [41], which determines the marine parameters of the
very short waves that are not visible in the SAR signal. The addition of such elements
would facilitate accommodating lower-quality SAR images in the bathymetry-estimation
process. It should be also noted that the selected two images, which were acquired in
two different years (assuming the seabed morphology in these deeper regions has not
changed drastically) allowed for the evaluation of the internal consistency of the proposed
depth-retrieval algorithm. The difference in the accuracy levels of depth predictions
between images A and B (Figure 10 and Table 2) can be attributed to different noise levels
of the two images and to the data acquisition discrepancies between the SAR data and the
reference data.

The selection of SAR images requires a more methodical approach to identify the
images with a swell-wave field propagating along the flight direction of the SAR sensor.
In theory, the velocity brunching phenomenon causes the azimuth traveling waves to be
smeared, making them of limited value for SAR bathymetry purposes [18]. This image
selection process can be improved by incorporating environmental factors such as wave
heights, wind speed, and surface current velocity during SAR data acquisition. A program
to detect swells imaged by SAR as long and regular features exhibiting bright and dark
alternating stripes would be a viable solution.

Sentinel-1 (5.4 GHz) data are transforming the field of coastal sciences with unprece-
dented volumes of openly accessible spatial information. The proposed automated ap-
proach, which only utilized Sentinel-1, could easily be extended to other SAR data sources



Remote Sens. 2024, 16, 1

19 of 21

References

with differing radar frequencies, such as ENVISAT ASAR (5.3 GHz), ALOS PALSAR
(1.27 GHz), GF-3 (5.4 GHz), RADARSAT-1 (5.3 GHz), etc. NISAR, with its new dual-
frequency radar imaging system, is another promising SAR data source that will be avail-
able, with an expected launch in 2024. Smaller radar frequencies facilitate a more distinct
contrast on SAR images that will aid in wave pattern distinction, while large radar fre-
quencies produce a stronger backscatter intensity of the sea surface [28]. Further, the size
of the FFT cell is a crucial element for dominant wavelength extraction that would lead
to more depth-appropriate predictions, which could be a topic for future studies. It is
also recommended to assess the versatility of the proposed method in different marine
environments with various wave conditions and geomorphological settings.

6. Conclusions

The openly accessible Sentinel-1 SAR images have the potential to produce consistent
bathymetric products with high spatial detail and high resolution in optically non-viable,
deeper nearshore coastal waters. The depth retrieval of these challenging deep regions
was only possible with expensive multibeam echo-sounders (MBES), making them scarce
and less repetitive. The generation of SAR-based bathymetry in this study allowed for
repeatable water-depth estimation in challenging water depths at fine spatial resolutions.
The SAR-based SDB model developed in this study utilized an automated wave-parameter
and depth-retrieval approach applied over an extensive coastal region. These promising
bathymetric frameworks, which are low-cost and scalable, are paving the way to advancing
marine research and planning, climate change understanding, coastal restoration, the
management and monitoring of coastal ecosystems, and navigation worldwide. Moreover,
with SAR-based SDB producing consistent predictions in much deeper coastal depths
with improved resolution, it can substantially improve change detection and benthic
habitat monitoring.
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