Terrestrial Lidar Data Classification Based on Raw Waveform Samples Versus Online Waveform Attributes
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


Terrestrial Lidar Data Classification Based on Raw Waveform Samples Versus Online Waveform Attributes

Filetype[PDF-18.67 MB]

Select the Download button to view the document
This document is over 5mb in size and cannot be previewed


  • Journal Title:
    IEEE Transactions on Geoscience and Remote Sensing
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    In this study, the potential of raw samples of digitized echo waveforms collected by full-waveform (FW) terrestrial laser scanning (TLS) for point cloud classification is investigated. Two different TLS systems are employed, both equipped with a waveform digitizer for access to the raw waveform and online waveform processing which assigns calibrated waveform attributes to each point measurement. Point cloud classification based on samples of the raw single-peak echo waveform is compared with point cloud classification based on the calibrated online waveform attributes. A deep convolutional neural network (DCNN) is designed for the supervised classification. Random forest classifier is used as a benchmark to evaluate the performance of the proposed DCNN model. In addition, feature importance and temporal stability of the raw waveform samples versus the calibrated waveform attributes for point cloud classification are reported. Classification results are evaluated at two study sites, a built environment on a university campus and a coastal wetland environment. Results show that direct classification of the raw waveform samples outperforms classification based on the set of waveform attributes at both study sites. Results also show that the contribution of the range, as the only geometric attribute in the raw waveform feature vector, significantly increases the classification performance. Finally, the performance of the DCNN for filtering ground points to generate a digital terrain model (DTM) based on classification of the raw waveform samples is assessed and compared to a DTM generated from a progressive morphological filter and to real-time kinematic (RTK) GNSS survey data.
  • Keywords:
  • Source:
    IEEE Transactions on Geoscience and Remote Sensing, 60, 1-19
  • DOI:
  • ISSN:
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1