Acidification of the Global Surface Ocean: What We Have Learned from Observations
-
2023
-
Details
-
Journal Title:Oceanography
-
Personal Author:
-
NOAA Program & Office:OAR (Oceanic and Atmospheric Research) ; PMEL (Pacific Marine Environmental Laboratory) ; AOML (Atlantic Oceanographic and Meteorological Laboratory) ; NESDIS (National Environmental Satellite, Data, and Information Service) ; NCEI (National Centers for Environmental Information) ; CIMERS (Cooperative Institute for Marine Ecosystem and Resources Studies) ; CICOES (Cooperative Institute for Climate, Ocean and Ecosystem Studies) ; CISESS (Cooperative Institute for Satellite Earth System Studies)
-
Description:The chemistry of the global ocean is rapidly changing due to the uptake of anthropogenic carbon dioxide (CO2). This process, commonly referred to as ocean acidification (OA), is negatively impacting many marine species and ecosystems. In this study, we combine observations in the global surface ocean collected by NOAA Pacific Marine Environmental Laboratory and Atlantic Oceanographic and Meteorological Laboratory scientists and their national and international colleagues over the past four decades, along with model outputs, to provide a high-resolution, regionally varying view of global surface ocean carbon dioxide fugacity, carbonate ion content, total hydrogen ion content, pH on total scale, and aragonite and calcite saturation states on selected time intervals from 1961 to 2020. We discuss the major roles played by air-sea anthropogenic CO2 uptake, warming, local upwelling processes, and declining buffer capacity in controlling the spatial and temporal variability of these parameters. These changes are occurring rapidly in regions that would normally be considered OA refugia, thus threatening the protection that these regions provide for stocks of sensitive species and increasing the potential for expanding biological impacts.
-
Keywords:
-
Source:Oceanography (2023)
-
Series:PMEL contribution no. 5481
-
DOI:
-
ISSN:1042-8275
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
License:
-
Rights Information:CC BY
-
Compliance:Submitted
-
Main Document Checksum:urn:sha-512:73a18587e4247159ba277b437c3666bff8c956b29cac5c58d2fdaf09d7fef2ed5342aa1459b384275c2b8b05a8a541356f32d9ba65e1ae43046fb921f86aaf6c
-
Download URL:
-
File Type:
ON THIS PAGE
The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles,
guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the
NOAA IR retains documents in their original published format to ensure public access to scientific information.