A Bayesian mixture model for missing data in marine mammal growth analysis
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

A Bayesian mixture model for missing data in marine mammal growth analysis

Filetype[PDF-1.04 MB]



Details:

  • Journal Title:
    Environmental and Ecological Statistics
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Much of what is known about bottle nose dolphin (Tursiops truncatus) anatomy and physiology is based on necropsies from stranding events. Measurements of total body length, total body mass, and age are used to estimate growth. It is more feasible to retrieve and transport smaller animals for total body mass measurement than larger animals, introducing a systematic bias in sampling. Adverse weather events, volunteer availability, and other unforeseen circumstances also contribute to incomplete measurement. We have developed a Bayesian mixture model to describe growth in detected stranded animals using data from both those that are fully measured and those not fully measured. Our approach uses a shared random effect to link the missingness mechanism (i.e. full/partial measurement) to distinct growth curves in the fully and partially measured populations, thereby enabling drawing of strength for estimation. We use simulation to compare our model to complete case analysis and two common multiple imputation methods according to model mean square error. Results indicate that our mixture model provides better fit both when the two populations are present and when they are not. The feasibility and utility of our new method is demonstrated by application to South Carolina strandings data.
  • Keywords:
  • Source:
    Environmental and Ecological Statistics, 23(4), 585-603
  • DOI:
  • Format:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1