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Abstract

Much of what is known about bottle nose dolphin (Tursiops truncatus) anatomy and physiology is 

based on necropsies from stranding events. Measurements of total body length, total body mass, 

and age are used to estimate growth. It is more feasible to retrieve and transport smaller animals 

for total body mass measurement than larger animals, introducing a systematic bias in sampling. 

Adverse weather events, volunteer availability, and other unforeseen circumstances also contribute 

to incomplete measurement. We have developed a Bayesian mixture model to describe growth in 

detected stranded animals using data from both those that are fully measured and those not fully 

measured. Our approach uses a shared random effect to link the missingness mechanism (i.e. full/

partial measurement) to distinct growth curves in the fully and partially measured populations, 

thereby enabling drawing of strength for estimation. We use simulation to compare our model to 

complete case analysis and two common multiple imputation methods according to model mean 

square error. Results indicate that our mixture model provides better fit both when the two 

populations are present and when they are not. The feasibility and utility of our new method is 

demonstrated by application to South Carolina strandings data.
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1 Introduction

1.1 Motivation

The Marine Mammal Protection Act (MMPA) initiated in 1972 prohibits the take of marine 

mammals in U.S. waters with few exceptions, limiting the sources of data on marine 

mammals. Stranding events provide opportunities to study aspects of marine mammals that 

may not otherwise be permitted. For the state of South Carolina, staff and volunteers from 

the National Oceanic and Atmospheric Administration (NOAA), South Carolina Department 

of Natural Resources, Coastal Carolina University, and volunteer designees comprise the 

Marine Mammal Stranding Network (MMSN). Through this program, data have been 

collected on marine mammal anatomy, physiology, diet, health status, and causes of 

mortality for hundreds of stranded animals. Unfortunately, few stranded animals, including 

bottlenose dolphins (Tursiops truncatus), are detected before major decomposition occurs, 

limiting the amount and quality of information available from each animal. Thus it is 

important to obtain and utilize as much information as possible on animals in good to fair 

condition.

In response to a 1994 amendment to the MMPA, the Marine Mammal Health and Stranding 

Response Program (MMHSRP) was formed. One goal of the MMHSRP is to model 

bottlenose dolphin growth for the southeastern U.S. coastal population. Growth curve 

comparisons between regions can help to distinguish biological or ecological differences in 

populations. Although several growth models exist, the Gompertz model (in various forms) 

has wide use in marine mammal studies, including those for the Gulf of Mexico (Mattson et 

al. 2006; Turner et al. 2006), eastern Florida (Stolen et al. 2002), and South Carolina (McFee 

et al. 2010) populations. Given observed age and total body mass on each of N animals, 

{(agei, wi), i = 1, 2, …, N}, the Gompertz model as used by Turner et al. (2006) is

where a is the upper asymptotic total body mass, b quantifies a shift of the model on the age 

axis, and k is the growth rate.

To use this model for body mass growth, both age and total body mass are needed for each 

animal. However, not all stranded animals the South Carolina MMSN detects can be fully 

measured. When possible, animals are transported to the laboratory for further analysis, 

including total body mass. Due to the limited number of volunteers, equipment availability, 

or other factors, it is more feasible to transport a smaller animal than a larger adult animal 

for laboratory measurements. This type of missingness presents a selection bias in which 

smaller animals have a higher tendency to be completely measured than larger animals, 
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causing an underestimate of animal mass when a growth curve is fit to only measured 

animals. In addition, pending weather conditions, accessibility to transportation (boat, truck, 

etc.), and even time of day (tidal influences, hours of daylight left) can pose constraints on 

the thoroughness of strandings assessments. All animals regardless of size are equally 

susceptible to this random missingness. Growth curve parameters are not expected to be 

biased due to this type of missingness; however, the decrease in sample size would degrade 

precision.

These two missing data mechanisms are difficult or impossible to correct for at the sampling 

stage. The current practice is to omit animals with missing data from the analysis (‘complete 

case analysis’). With the already small sample sizes of strandings datasets, it is imperative 

that all available data be used. The goals of this study are: (1) Develop a statistical model for 

growth in bottlenose dolphins off SC utilizing two groups–animals fully measured and not 

fully measured, to compensate for the omission of larger animals in the complete case 

analysis; (2) Evaluate model performance through a simulation study, applying the model to 

generated data based on real data characteristics; (3) Compare the developed model results 

to those from complete case and multiple imputation methods performed by Shotwell et al. 

(2010); (4) Apply the model to real data.

1.2 Missing data considerations

Handling missing data by complete case analysis can be costly not only in terms of 

decreased statistical power and imprecise variance estimates, but also the parameter 

estimates will be biased unless the complete cases represent a random sample of the focal 

population (Rubin 1976). Since random chance is rarely the reason for missingness, several 

missing data methods have been established to deal with other known sources for 

missingness.

Established missing data methods often rely on assumptions about the missing data 

mechanism. Rubin (1976) established mechanisms based on whether missingness depends 

on the observed data, unobserved data, or neither. Missing completely at random (MCAR) 

refers to the case when missingness does not depend on either the observed data or the 

unobserved data. If MCAR holds, the complete case analysis would be valid in the sense that 

parameter estimates are unbiased. A less restrictive case is the missing at random (MAR) 

mechanism, in which the missingness depends on the observed data, while in the least 

restrictive missing not at random (MNAR) mechanism, missingness depends on the 

unobserved data. In strandings data, the lack of total body mass measurement depends on 

total body mass itself; however, total body mass can be predicted by the observed total body 

length, making MAR methods possible.

1.3 Available methods

Several established missing data methods could help to compensate for the selection bias 

present in marine mammal strandings data. Previously, regression and propensity score 

multiple imputation (MI) methods were examined to assess the effect of missing data on 

Gompertz growth parameters (Shotwell et al. 2010). Both methods are straightforward to 

implement, and application to strandings data suggested possible bias in growth parameter 
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estimates obtained under complete case analysis. However, Carpenter et al. (2006) have 

shown that MI is not robust to misspecification of the imputation model, and resulting 

estimates can therefore be inconsistent.

Inverse probability weighting (IPW) methods (Horvitz and Thompson 1952) weight the 

observed data by the inverse of the propensity score (i.e. missingness probability). Carpenter 

et al. (2006) and Robins and Rotnitzky (1995) developed more complex missing data models 

using IPW as the foundation, which have led to further development of weighted estimating 

equations (Robins et al. 1994, 1995; Rotnitzky et al. 1998) and concepts of double 

robustness (Robins and Rotnitzky 2001; Laan and Robins 2003). Methods utilizing IPW 

have been shown to have high variance inherently (Kang and Schafer 2007), and are known 

to be less efficient than methods based on likelihood (Clayton et al. 1998; Carpenter et al. 

2006).

Likelihood methods are commonly used and can be readily executed if the likelihood of 

interest is fairly simple. However, as the model becomes progressively more complex and 

when data are missing, likelihood methods can become computationally intensive and 

cumbersome. The expectation–maximization (EM) algorithm (Dempster et al. 1977) was 

developed for these cases, although it is not always possible to calculate the expectation of 

the E step in closed form. In some cases the maximization of the M step requires a series of 

iterative steps, which can result in achieving several maxima (Little and Schluchter 1985). 

Dong and Peng (2013) provide a recent review of these missing data methods.

Bayesian methods are especially valuable if prior information is known about distributions 

or clinical relevance of parameters. Prior distributions can range from highly informative, so 

that the investigator can emphasize relevant field knowledge, to uninformative or relatively 

“flat”, in which case the resulting estimates rely heavily on the data. When the posterior 

distribution cannot be derived in closed form, Markov chain Monte Carlo (MCMC) methods 

can be used to obtain realizations from the posterior distributions. Gibbs sampling (Geman 

and Geman 1984) is an MCMC method that uses draws from the successive full conditional 

distributions that, upon convergence, characterize the posterior distribution. Missing data 

does not create difficulty for this method, since a value for the missing element can be drawn 

from the posterior distributions at each step. These advantages make the Bayesian method 

attractive for the purposes of this study.

2 Methods

2.1 Data

All detected stranded bottlenose dolphins (T. truncatus) considered freshly stranded or 

moderately decomposed along the South Carolina coastline from 1993 to 2007 were 

included in this study. A total of 91 animals (55 female, 20 male, 16 unknown sex) were 

necropsied at the stranding site or the NOAA lab facility in Charleston, SC. Morphometric 

measurements (Hoffman 1991), including total body length (cm), girths (cm), blubber 

depths (cm), and total body mass (kg) were taken during each necropsy when possible. A 

total of 18 animals did not have total body length measured, leaving a sample of 73 animals 

for these analyses. Organ mass measurements (g), tissue samples, and bodily fluid samples 
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were also part of each necropsy. Stranding site information, such as location, condition of 

the animal, signs of human interaction, and date were recorded. Age in years was 

determined by mid-longitudinal, stained and mounted thin tooth sections according to 

established protocols (Hohn et al. 1989).

2.2 Model

A goal of this study is to model total body mass (kg) as a function of age (years) for all 

stranded, detected bottlenose dolphins off South Carolina. It is suspected that animals not 

fully measured tend to have larger body sizes, and hence may have different Gompertz 

growth parameters than those measured.

For animal i, i = 1, 2, …, N, let wi denote the total body mass, agei be the age, lengthi be the 

animal length, and let mi be an indicator of whether the animal is fully measured, i.e. mi = 

1(0) according to whether wi is observed(unobserved). Our model is as follows:

(1)

where Q = {β0, β1, a0, b0, k0, a1, b1, k1, σ} and all conditional distributions hold 

independently i = 1, 2, …, N. Here, conditional on the parameters Q, the total body mass, 

wi, has a distribution that is the mixture of two normal components, each having a Gompertz 

mean. The latent indicator zi has the same distribution as the observed measurement status, 

mi. It is the latent zi, however, and not mi, that determines the component of the normal 

mixture governing wi, thereby enabling information from all animals, fully measured and 

not, to contribute to estimation of both components of the normal mixture. Thus zi, or 

equivalently pi, is a shared random effect linking the growth model for wi to the missingness 

model.

The probability that total body mass for animal i is observed, pi, is modeled as a linear 

function of length on the logit scale. This model choice follows from the work of Shotwell et 

al. (2010), who investigated available predictors for the probability of missing total body 

mass and concluded that only total body length was significant.
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The prior distributions for the parameters in Q were set as follows. The logistic regression 

parameters (β0, β1) have independent normal priors with mean zero and large variance 

(100). The prior on a1 is a non-informative log-normal distribution with large variance (log-

Normal(0,100)), since a1 > 0. Because unmeasured animals are expected to have greater 

mean asymptotic total body mass than measured animals, we require a0 ≫ a1 and 

parameterize as a0 = a1 + δ for δ ≥ 0. We take δ ~ U[0, 50], as values over 50kg would 

imply unrealistically large differences in total body mass between the two groups. 

Additionally, given our knowledge that measured animals have asymptotic total body mass 

approximately 175kg (males and females combined, Turner et al. 2006), δ larger than 50kg 

corresponds to unrealistically large masses for unmeasured animals. For marine mammals, 

the Gompertz shift parameter b tends to range from 0 to 2, while the slope k ranges between 

0 and 1 (see Turner et al. 2006; Stolen et al. 2002). To be relatively noninformative, we 

expanded these ranges and set b0, b1 ~ U (0, 5) and k0, k1 ~ U (0, 2). Following the 

suggestion of Gelman (2006), the prior distribution for σ was taken as U (0, 5).

2.3 Estimation

Model fitting and estimation were performed using R (©2006) v. 2.4.0 software. A Gibbs 

sampler was designed for sampling from the joint posterior distribution. The full conditional 

posterior distributions are given in the Appendix. Since many of these are nonstandard 

distributions, the Metropolis–Hastings (M–H) algorithm was used to draw samples. The 

proposal distributions in the M–H algorithms were normal with a mean equal to the previous 

draw’s value for that parameter (or initial value at the start). The variance of the proposal 

distribution was optimized to ensure that the acceptance rate was no less than 10% (see 

Tanner 1996 for review).

The number of burn-in iterations for analysis of the strandings data was determined by 

evidence of convergence. Two chains were run simultaneously, and the variance between 

and within chains was used to calculate the Gelman–Rubin statistic R (Gelman and Rubin 

1992) for all model parameters. A mean Gelman–Rubin statistic of 1.10 or less (mean of the 

means across the number of replications) was a criterion for convergence. Trace plots were 

also examined to ensure mixing of the two chains over the iterations.

The number of burn-in iterations for the simulation study was determined using data 

generated under scenario a0 ≫ a1 (described in Sect. 2.4.2) with N = 100 animals and 50 

run, and corresponding Rs were assessed. If convergence critera were not met, an additional 

10,000 iterations were run, with the process continuing until convergence was met. This 

iterative process continued through 5 generated datasets, using the previous number of 

iterations needed for convergence as the burn-in for the next dataset. Correlation plots for 

each parameter were examined, and thinning was performed using every 5, 10, 20, 30, 40, 

and 50 iterations. Convergence occurred within 210,000 burn-in iterations. Posterior 

inference was based on a sample of 7000 obtained by taking a subsequent 210,000 iterations 

and thinning by 30.

Initial simulation runs with the small sample size of N = 50 revealed that convergence 

criteria were not uniformly met with 210,000 burn-in iterations. For these simulations, we 

used 420,000 burn-in iterations.
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2.4 Simulation scheme

All simulations were performed using R (©2006) v. 2.4.0 software. Simulations were 

designed to achieve several goals, studying the effects on parameter estimation in model (1) 

of changes in sample size, the percentage of missing data, and the difference in the 

underlying values of the Gompertz parameters in μ0(·) and μ1(·).

2.4.1 Data generation—Populations of dolphins of size N were generated according to 

the sequence animal age, then total body length, then measurement status and, lastly, total 

body mass. Observed data from wild SC bottlenose dolphins (described in Sect. 2.1) were 

used to ensure the simulated data were realistic. Simulated animal ages were randomly 

drawn from the fit of the exponential distribution to the ages reported by NOAA 

investigators for the observed SC wild dophins; this fit had mean 10.1 years. Total body 

lengths were then drawn according to a Gompertz function of age consistent with prior 

analyses of Turner et al. (2006) and Shotwell et al. (2010). More specifically, the total body 

length for animal i was drawn from a normal distribution with standard deviation 4 cm and 

mean 250·exp(−0.75·exp(−0.35·agei)). Each animal i was then assigned a probability pi of 

being fully measured based on the logistic regression in (1) and the desired missingness 

percentage (i.e. fraction not fully measured), as described below. The indicator for fully 

measured, mi, and the indicator determining the Gompertz mean for total body mass, zi, 

were assigned (independently) according to a Bernoulli(pi) distribution. Finally, given agei 

and zi, total body mass was generated from the corresponding normal distribution with 

Gompertz mean and standard deviation σ = 4 kg.

A desired missingness percentage q was achieved by determining appropriate values for β0 

and β1 in (1) as follows: First, the maximum probability of measurement was fixed at pmax = 

0.95, corresponding to the length of Lmin = 95 cm, approximately the smallest length 

observed among SC dolphins. Second, a minimum probability of measurement, pmin, was 

proposed corresponding to a length of Lmax = 275 cm, approximately the largest length 

observed among SC dolphins. Using these values in model (1) determined candidate values 

for β0 and β1. Five data sets of size N = 100 animals were then generated using these 

candidate values, and the average percentage of missingness, q̂av, was calculated (upon 

generation of the measurement indicators mi). The proposed value of pmin was adjusted and 

the remainder of the procedure repeated until |q̂av − q| ≤ 0.5%, at which point the current 

values of β0 and β1 were retained for data generation.

2.4.2 Sample size, missingness, growth differences—The sample size, N, 

percentage of missing data, q, and difference in μ0 and μ1 were studied using a 3 × 3 × 3 

factorial scheme. Sample sizes of N = 50, 100, and 500 were used, reflecting plausible 

strandings dataset sizes. Percentages of missing data examined were q = 20, 30, and 40 since 

such large percentages are present in real data. And three growth scenarios were examined: 

(1) no difference in growth between measured and not measured groups, i.e. (a0, b0, k0) = 

(a1, b1, k1), denoted as “a0 = a1”; (2) growth in the not measured group reaches a larger 

mean asymptotic total body mass at a quicker rate, with the initial fast period of growth 

sooner than those that are measured, denoted as “a0 ≫ a1”; (3) same as scenario 2, but the 
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magnitudes of difference are decreased (“a0 > a1”). Scenario 3 was used to investigate the 

model fit when the two different groups are less well distinguished.

The Gompertz parameters used to generate total body masses for the animals not measured 

varied, while the Gompertz parameters for the measured animals remained constant over the 

simulations (a1 = 160, b1 = 2.0, k1 = 0.175). Turner et al. (2006) found the standard error of 

a to be approximately between 11 and 20, however, differences larger than 10 kg may be 

unreasonable. Also, using corresponding standard errors for b and k (Turner et al. 2006), the 

largest differences scenario (a0 ≫ a1) had a0 = 170, b0 = 1.7, and k0 = 0.25. The midpoints 

of the differences (a0 = 165, b0 = 1.85, k0 = 0.21) were used for the scenario with decreased 

differences (a0 > a1). The standard deviation used in generating total body lengths and 

masses was specified as 4, resulting in mass and length distributions similar to those seen in 

the real data.

2.5 Determination of simulation size

The number of replications, i.e. the number of generated data sets under one scenario, was 

determined so that credible intervals for the mean differences a0 − a1, b0 − b1, and k0 − k1 

had specified width.

Using a0 − a1 for illustration, it was assumed that the estimated mean difference da between 

a0 and a1 had mean δa and variance  The distribution of d̄a, the mean of the estimated 

means over m generated data sets, is then approximately normally distributed with mean δa 

and variance . Under these assumptions, m was selected so that, for specified margin 

of error E and coverage probability 1 − α, Pr(−E < d̄a − δa < E) = 1 − α. Thus, m = (zα/2 

σa/E)2, where zα/2 is the α/2 critical value from the standard normal distribution.

Approximate values for the variances of the difference in Gompertz parameters,  and 

 were determined as the mean of the posterior means from fitting the model to 100 data 

sets, each of size 100 animals generated with 50 missing total body mass under the scenario 

a0 ≫ a1. The burn-in and sample iterations with thinning were as described in Sect. 2.3. 

Using α = 0.05 and E = 2, 5 and 0.01 for the differences in a, b and k, respectively, the total 

number of replications m was determined to be 35, 23, and 15, respectively. The more 

extreme situation of 50% missing total body mass was used to be conservative, driving 

larger estimated variances and hence larger m, helping to ensure that all simulation scenarios 

would produce 1 − α credible intervals within the desired margin of error. Based on these 

results, 50 replications for each of the 27 data generation scenarios was deemed sufficient.

2.6 Comparison analyses

In addition to our new mixture model, both regression and propensity score multiple 

imputation methods were implemented for each generated dataset, using the approach of 

Shotwell et al. (2010). Total body length was used to predict total body mass under 

regression multiple imputation, and to predict the probability of being measured under 

propensity score multiple imputation. Five completed datasets were imputed, and results 

combined for estimation of one Gompertz curve.
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2.7 Simulation evaluation

Upon convergence, the posterior means for all parameters were computed for each 

simulation run. The sample mean and variance of these posterior means were computed 

across the simulations and recorded. These estimated parameters were compared to the true 

parameter settings to compute parameter-specific mean square errors.

Because the data were simulated, every total body mass, whether simulated as fully 

measured or not, could be compared to a mean total body mass at that same age from the 

fitted Gompertz model. The model mean square error was computed between the true 

simulated total body mass wi and the predicted total body mass ŵi as

The model mean square errors for the complete case and multiple imputation analyses were 

calculated using their respective estimated a, b, and k in the Gompertz model. In the 

corresponding MSE calculation for our new Bayesian model, ŵi was computed as the 

mixture (1 − zĩ) μ̃0(agei) + z̃i μ̃1(agei) where the tilde indicates the posterior mean.

3 Results

3.1 Simulation

3.1.1 Bias—Tables 1, 2 and 3 display the relative bias and mean square errors for each 

parameter. Bias was largest in the small sample size scenarios (N = 50). All three Gompertz 

parameter estimates for the measured animal group (a1, b1, k1) had small relative biases with 

the exception of k1 for one scenario (a0 > a1, 40% missing). Relative biases for a0, b0, and k0 

were moderate, with an exception for k0 when the growth groups were equal with 20% 

missing data. Increasing sample size to 100 animals greatly reduced relative bias to 0–5%, 

and to nearly zero for N = 500. The exceptions were β0 and β1, with relative biases ranging 

from approximately −5 to 50% for N = 50 and reducing to about −10 to 10% for N = 500.

Few trends in relative bias across percentages of missing data were evident. The relative bias 

in β0, β1, and b0 tended to decrease as percentage of missing data increased. This was 

apparent in sample sizes of 50 and 100 animals, but not in sample sizes of 500 animals.

There were several changes in relative bias according to the magnitude of difference 

between μ0 and μ1. Relative biases for a0, β0, β1, and b0 were lowest under the scenario a0 ≫ 
a1 and increased as the two growth groups approached equality. The relative bias for k0 was 

small except when the growth groups were equal with sample size N = 50. All three 

parameters within μ1 had less relative bias when μ0 differed from μ1, as did σ. When the 

growth groups were equal, σ was consistently underestimated by 5–10%.

3.1.2 Parameter-specific MSE—Since mean square error is a relative measure, it cannot 

be directly compared across parameters. However, in the case of this model, it may be 

warranted to compare MSEs of the growth parameters (a0, b0, k0) to those of (a1, b1, k1), 
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since they share a similar interpretation. For parameters β1 and k1, the estimated mean 

square errors were all less than 0.01, constituting very small changes over the simulation 

scenarios. Trends in estimated MSE described here are representative of the remaining 

parameters.

Sample sizes of N = 50 produced the largest mean square errors, and as sample size 

increased, estimated mean square errors decreased. At the smallest sample size, the range of 

MSEs for a0 was wider than that found for a1, ranging from approximately 40–450 and 12–

265, respectively. The same holds true for the range of estimates comparing b0 with b1 and 

k0 with k1. For all parameters, estimated MSEs decreased to much smaller values at N = 

100, with the least amount of change occurring for σ. At N = 500, all MSEs were estimated 

to be small or close to zero.

As was the case with relative bias, MSE did not display obvious trends with percentage of 

missing data. Estimated MSEs for β0 and b0 tend to decrease as percentage of missing data 

increases, while those for a1 and b1 increase.

Differences in estimated MSEs between the growth groups decreased as sample size 

increased. For β0, σ, a0, b0, and k0, the scenario with a0 ≫ a1 resulted in the lowest MSEs. 

Overall, the scenarios in which a0 ≠ a1 tended to result in estimated MSEs less than those 

found when there were no differences between the groups, with the exception of a1 and b1 

when N = 50. The MSEs for k0 when N = 50 again showed that equal growth groups 

produced results unlike the other scenarios.

3.1.3 Model MSE—Figure 1 contains plots of the estimated mean square error across 

percentage of missing data within each Gompertz mean scenario and sample size. As the 

percentage of missing data increased, the estimated MSE increased for the new, complete 

case, and regression multiple imputation models. The propensity score multiple imputation 

model, however, had the largest MSE when the percentage of missing data was 30%.

Complete case analysis performed best for the scenarios with N = 50 and a0 = a1, and 

performed similarly to the new model when a0 > a1. For all other scenarios, the new model 

outperformed the complete case, regression MI, and propensity MI in terms of model MSE. 

Complete case performed second best in these other scenarios, and propensity MI performed 

consistently worst in every scenario.

The sample variances of the MSEs for each model were largest for the smallest sample size, 

and decreased as the sample size increased. The new model MSE sample variance tended to 

increase as percentage of missing data increased, whereas no apparent trend was seen in the 

complete case results. The variances of the regression and propensity multiple imputation 

methods were generally larger than those found for either the new or complete case methods, 

with the propensity MI methods consistently having the largest variances.
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3.2 Application

The results from fitting model (1) to the SC MMSN data are given in Table 4. The complete 

cases totaled 37 animals, while the new method additionally utilized age and lengths for 

those animals missing total body mass, totaling 73 animals.

The probability of being measured, based on the logistic regression parameter estimates and 

the minimum/maximum total body length, ranged from 0.20 to 0.83. The mean asymptotic 

total body mass between the two growth groups differed by an estimated 49 kilograms. 

Animals in the measured group had a slightly higher estimated growth rate (k1 = 0.287) than 

the unmeasured group (k0 = 0.256), with the fast growth period occurring later (b1 = 2.317; 

b0 = 1.727).

Complete case analysis resulted in estimates of a = 172.5 (se = 10.4), b = 2.10 (se = 0.2), 

and k = 0.23 (se = 0.04). Propensity score multiple imputations results (a = 171.17 (10.1), b 
= 2.00 (0.2), k = 0.26 (0.05)) most closely resembled complete case results out of the 

methods investigated. Regression multiple imputation resulted in a lower mean asymptotic 

total body mass (a = 163.74 (7.7)) than complete case analysis, with lower shift (b = 1.91 

(0.2)) and faster growth (k = 0.27 (0.04)).

The new model is a mixture model, with different growth structures for the fully and 

partially measured groups in the population. However, in keeping with the prevalent use and 

interpretability of the Gompertz model, investigators may wish to have one unifying 

Gompertz curve that represents the fitted new model. Toward this end, estimates of β0 and 

β1 can be used with total body length of animal i to estimate the probability animal i is 

measured (pî), via

The weighted average total body mass, w̄i, is then computed from means μ̂0 and μ̂1 weighted 

by pî as follows:

The left panel in Fig. 2 displays the observed data and the two components μ̂0 and μ̂1 of the 

new model fit, together with the computed values of w̄i denoted by solid circles. The 

Gompertz curve closest to the wī (by least squares) is shown in the right panel (a = 171.01, b 
= 2.20, k = 0.28). Standard errors for the estimates of a, b, and k, respectively, were 0.47, 

0.02, and less than 0.01, although these standard errors ignore the uncertainty of the 

estimates of the parameters in Q. The mean asymptotic total body mass for the unifying 

summary curve is similar to that found by Shotwell et al. (2010) for complete case (a = 

172.5, b = 2.10, k = 0.23) and propensity score analysis. However, both b and k are 

estimated to be larger than those estimated in the other analyses.
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4 Discussion

Because data for modeling the growth of bottlenose dolphins is severely limited, it is 

important to use all available information from strandings. By postulating that animals not 

fully measured have a separate growth curve constrained to have greater asymptotic total 

mass and allowing information to be shared between the fully measured and not fully 

measured animals, our model provides a way to accommodate information from both of 

these groups, unlike complete case analysis. The application uses all available information 

and hence produces a growth curve that better reflects observed and unobserved total body 

masses.

Overall, parameter estimation was not as sensitive to percentage of missing data as to sample 

size and difference in growth parameters. The percentage of missing data, however, may 

affect the strength of the logistic regression and hence the ability to estimate β0 and β1. 

Generally both relative bias and MSE decreased as sample size increased and as the growth 

groups increasingly differed. It is reasonable to expect such a trend, in that the more distinct 

the means are, the better the estimation.

The new model performed best among the examined models, with lower mean model MSE 

than the two multiple imputation methods in all simulation scenarios, and lower model MSE 

than complete case in most scenarios. However, when the two groups had the same mean 

growth pattern, we observed underestimation of the error variance suggesting an anticipated 

overfitting. Another weakness of the new model is less precise estimation of (the greater 

number of) parameters when the sample size is small. Nonetheless, when the growths differ 

in small datasets, or no differences occur in large datasets, the new model is preferred over 

complete case and multiple imputation methods.

Analysis of the South Carolina MMSN data revealed a large difference in asymptotic total 

body mass for the measured and unmeasured components of the mixture. The complete case 

asymptotic total body mass is closer to a0 than a1, consistent with the underlying assumption 

(of complete case analysis) that the measured animals are representative of the unmeasured 

animals. The low estimate for a1 may emphasize how rarely large animals are indeed 

measured and how, when measured, these animals may have a large influence on the 

asymptote in complete case analysis. The estimated growth rate is slightly faster for 

measured than unmeasured animals, while the initial growth spurt occurs later. The 

unmeasured group achieves larger sizes with the fastest growth period occurring sooner, but 

the overall growth rate is slightly lower than the measured group.

The complete case analysis from Shotwell et al. (2010) may underestimate the initial growth 

in total body mass, while overestimating asymptotic total body mass. In comparison to the 

new model, the complete case model may weight the largest overall total body mass too 

heavily, while not weighting the larger total body masses for the younger ages enough. The 

regression multiple imputation curve follows closely the unweighted mean of the two new 

method growth curves (i.e., the midpoint curve), suggesting its usefulness when missingness 

is not due to animal size. The propensity multiple imputation curve most closely follows the 

total body mass curve of the unmeasured animals, with poorer fit in the juvenile to adult 
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ages. The uncertainty at these middle ages may be due to the logistic regression fit, in which 

the probability an animal is measured is close to 0.50 in this age range.

It is possible the animal with a total body mass greater than 240 kg is part of the offshore 

population. It was not excluded in the analysis, however, since other animals in the dataset 

may also be offshore animals, as definitive distinction is difficult. Offshore animals tend to 

be larger in body size than the resident population (Mead and Potter 1995), and hence would 

be fully measured less frequently. A benefit of our mixture model is that it could be adapted 

in future work to separate the offshore and resident populations with two different 

underlying growth scenarios. Some applications may call for an additional model extensions 

to heterogeneous variances for the mixture components or variance as a function of age.

Investigators are advised to focus interpretation on the Gompertz growth parameters in the 

two components of the mixture. However, the weighted average curve discussed in Sect. 4 

and shown in Fig. 2 for the South Carolina MMSN data provides a unified curve that does 

adjust for bias due to missingness.
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Full conditional posterior distributions for all model parameters.
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Fig. 1. 
Comparison of missing data methods. The mean MSE across the replications for the new 

method is shown in the solid line, complete case method in the dashed line, regression MI 

method in the dotted line, and propensity MI method in the mixed dash-dot line. The median 

standard deviation of these MSE values is 69.3 for propensity MI and in the range 2–6 for 

the other methods
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Fig. 2. 
Weighted average and subsequent Gompertz curve from the new mixture model. The South 

Carolina data are represented by hollow circles and the calculated weighted averages are 

represented by solid circles. The two Gompertz curves resulting from the mixture model are 

shown in solid lines, while the Gompert curve fit to the weighted averages is shown in the 

dashed line
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Table 4

Posterior means and standard deviations (SD) for model (i) parameters from the fit to the SC MMSN data

Parameter Mean SD

β0 2.869 0.675

β1 −0.015 0.004

a0 186.797 3.192

b0 1.727 0.063

k0 0.256 0.025

a1 137.734 3.141

b1 2.317 0.093

k1 0.287 0.017

σ 4.973 0.027
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