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Abstract

Much of what is known about bottle nose dolphin ( 7ursiops truncatus) anatomy and physiology is
based on necropsies from stranding events. Measurements of total body length, total body mass,
and age are used to estimate growth. It is more feasible to retrieve and transport smaller animals
for total body mass measurement than larger animals, introducing a systematic bias in sampling.
Adverse weather events, volunteer availability, and other unforeseen circumstances also contribute
to incomplete measurement. \We have developed a Bayesian mixture model to describe growth in
detected stranded animals using data from both those that are fully measured and those not fully
measured. Our approach uses a shared random effect to link the missingness mechanism (i.e. full/
partial measurement) to distinct growth curves in the fully and partially measured populations,
thereby enabling drawing of strength for estimation. We use simulation to compare our model to
complete case analysis and two common multiple imputation methods according to model mean
square error. Results indicate that our mixture model provides better fit both when the two
populations are present and when they are not. The feasibility and utility of our new method is
demonstrated by application to South Carolina strandings data.
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1 Introduction

1.1 Motivation

The Marine Mammal Protection Act (MMPA) initiated in 1972 prohibits the take of marine
mammals in U.S. waters with few exceptions, limiting the sources of data on marine
mammals. Stranding events provide opportunities to study aspects of marine mammals that
may not otherwise be permitted. For the state of South Carolina, staff and volunteers from
the National Oceanic and Atmospheric Administration (NOAA), South Carolina Department
of Natural Resources, Coastal Carolina University, and volunteer designees comprise the
Marine Mammal Stranding Network (MMSN). Through this program, data have been
collected on marine mammal anatomy, physiology, diet, health status, and causes of
mortality for hundreds of stranded animals. Unfortunately, few stranded animals, including
bottlenose dolphins ( 7ursiops truncatus), are detected before major decomposition occurs,
limiting the amount and quality of information available from each animal. Thus it is
important to obtain and utilize as much information as possible on animals in good to fair
condition.

In response to a 1994 amendment to the MMPA, the Marine Mammal Health and Stranding
Response Program (MMHSRP) was formed. One goal of the MMHSRP is to model
bottlenose dolphin growth for the southeastern U.S. coastal population. Growth curve
comparisons between regions can help to distinguish biological or ecological differences in
populations. Although several growth models exist, the Gompertz model (in various forms)
has wide use in marine mammal studies, including those for the Gulf of Mexico (Mattson et
al. 2006; Turner et al. 2006), eastern Florida (Stolen et al. 2002), and South Carolina (McFee
et al. 2010) populations. Given observed age and total body mass on each of A/animals,
{(agej, W), i=1, 2, ..., N}, the Gompertz model as used by Turner et al. (2006) is

w;=a - exp(—b - exp(—k - age;))+¢;

gi~N(0,0?), independently

a>0,b>0,k>0, age;>0,

where ais the upper asymptotic total body mass, 4 quantifies a shift of the model on the age
axis, and kis the growth rate.

To use this model for body mass growth, both age and total body mass are needed for each
animal. However, not all stranded animals the South Carolina MMSN detects can be fully
measured. When possible, animals are transported to the laboratory for further analysis,
including total body mass. Due to the limited number of volunteers, equipment availability,
or other factors, it is more feasible to transport a smaller animal than a larger adult animal
for laboratory measurements. This type of missingness presents a selection bias in which
smaller animals have a higher tendency to be completely measured than larger animals,
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causing an underestimate of animal mass when a growth curve is fit to only measured
animals. In addition, pending weather conditions, accessibility to transportation (boat, truck,
etc.), and even time of day (tidal influences, hours of daylight left) can pose constraints on
the thoroughness of strandings assessments. All animals regardless of size are equally
susceptible to this random missingness. Growth curve parameters are not expected to be
biased due to this type of missingness; however, the decrease in sample size would degrade
precision.

These two missing data mechanisms are difficult or impossible to correct for at the sampling
stage. The current practice is to omit animals with missing data from the analysis (‘complete
case analysis’). With the already small sample sizes of strandings datasets, it is imperative
that all available data be used. The goals of this study are: (1) Develop a statistical model for
growth in bottlenose dolphins off SC utilizing two groups—animals fully measured and not
fully measured, to compensate for the omission of larger animals in the complete case
analysis; (2) Evaluate model performance through a simulation study, applying the model to
generated data based on real data characteristics; (3) Compare the developed model results
to those from complete case and multiple imputation methods performed by Shotwell et al.
(2010); (4) Apply the model to real data.

1.2 Missing data considerations

Handling missing data by complete case analysis can be costly not only in terms of
decreased statistical power and imprecise variance estimates, but also the parameter
estimates will be biased unless the complete cases represent a random sample of the focal
population (Rubin 1976). Since random chance is rarely the reason for missingness, several
missing data methods have been established to deal with other known sources for
missingness.

Established missing data methods often rely on assumptions about the missing data
mechanism. Rubin (1976) established mechanisms based on whether missingness depends
on the observed data, unobserved data, or neither. Missing completely at random (MCAR)
refers to the case when missingness does not depend on either the observed data or the
unobserved data. If MCAR holds, the complete case analysis would be valid in the sense that
parameter estimates are unbiased. A less restrictive case is the missing at random (MAR)
mechanism, in which the missingness depends on the observed data, while in the least
restrictive missing not at random (MNAR) mechanism, missingness depends on the
unobserved data. In strandings data, the lack of total body mass measurement depends on
total body mass itself; however, total body mass can be predicted by the observed total body
length, making MAR methods possible.

1.3 Available methods

Several established missing data methods could help to compensate for the selection bias
present in marine mammal strandings data. Previously, regression and propensity score
multiple imputation (MI) methods were examined to assess the effect of missing data on
Gompertz growth parameters (Shotwell et al. 2010). Both methods are straightforward to
implement, and application to strandings data suggested possible bias in growth parameter
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estimates obtained under complete case analysis. However, Carpenter et al. (2006) have
shown that M1 is not robust to misspecification of the imputation model, and resulting
estimates can therefore be inconsistent.

Inverse probability weighting (IPW) methods (Horvitz and Thompson 1952) weight the
observed data by the inverse of the propensity score (i.e. missingness probability). Carpenter
et al. (2006) and Robins and Rotnitzky (1995) developed more complex missing data models
using IPW as the foundation, which have led to further development of weighted estimating
equations (Robins et al. 1994, 1995; Rotnitzky et al. 1998) and concepts of double
robustness (Robins and Rotnitzky 2001; Laan and Robins 2003). Methods utilizing IPW
have been shown to have high variance inherently (Kang and Schafer 2007), and are known
to be less efficient than methods based on likelihood (Clayton et al. 1998; Carpenter et al.
2006).

Likelihood methods are commonly used and can be readily executed if the likelihood of
interest is fairly simple. However, as the model becomes progressively more complex and
when data are missing, likelihood methods can become computationally intensive and
cumbersome. The expectation—-maximization (EM) algorithm (Dempster et al. 1977) was
developed for these cases, although it is not always possible to calculate the expectation of
the E step in closed form. In some cases the maximization of the M step requires a series of
iterative steps, which can result in achieving several maxima (Little and Schluchter 1985).
Dong and Peng (2013) provide a recent review of these missing data methods.

Bayesian methods are especially valuable if prior information is known about distributions
or clinical relevance of parameters. Prior distributions can range from highly informative, so
that the investigator can emphasize relevant field knowledge, to uninformative or relatively
“flat”, in which case the resulting estimates rely heavily on the data. When the posterior
distribution cannot be derived in closed form, Markov chain Monte Carlo (MCMC) methods
can be used to obtain realizations from the posterior distributions. Gibbs sampling (Geman
and Geman 1984) is an MCMC method that uses draws from the successive full conditional
distributions that, upon convergence, characterize the posterior distribution. Missing data
does not create difficulty for this method, since a value for the missing element can be drawn
from the posterior distributions at each step. These advantages make the Bayesian method
attractive for the purposes of this study.

2 Methods
2.1 Data

All detected stranded bottlenose dolphins ( 7. truncatus) considered freshly stranded or
moderately decomposed along the South Carolina coastline from 1993 to 2007 were
included in this study. A total of 91 animals (55 female, 20 male, 16 unknown sex) were
necropsied at the stranding site or the NOAA lab facility in Charleston, SC. Morphometric
measurements (Hoffman 1991), including total body length (cm), girths (cm), blubber
depths (cm), and total body mass (kg) were taken during each necropsy when possible. A
total of 18 animals did not have total body length measured, leaving a sample of 73 animals
for these analyses. Organ mass measurements (g), tissue samples, and bodily fluid samples

Environ Ecol Stat. Author manuscript; available in PMC 2017 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shotwell et al.

2.2 Model

Page 5

were also part of each necropsy. Stranding site information, such as location, condition of
the animal, signs of human interaction, and date were recorded. Age in years was
determined by mid-longitudinal, stained and mounted thin tooth sections according to
established protocols (Hohn et al. 1989).

A goal of this study is to model total body mass (kg) as a function of age (years) for all
stranded, detected bottlenose dolphins off South Carolina. It is suspected that animals not
fully measured tend to have larger body sizes, and hence may have different Gompertz
growth parameters than those measured.

Foranimal /, /=1, 2, ..., N, let wjdenote the total body mass, age, be the age, length, be the
animal length, and let m;be an indicator of whether the animal is fully measured, i.e. m;=
1(0) according to whether w;is observed(unobserved). Our model is as follows:

w;|Q, zi=j~N (pj(age;),0%) j=0,1

wj(age;)=a; exp(—b; exp(—kjage;))

zi|Q~Bern(pi) (1)

m;|Q~Bern(p;)

logit (p;)=po~+F1length,,

where Q = {Bo. B1, 4, b0, ko, &1, b1, k1, o} and all conditional distributions hold
independently /=1, 2, ..., . Here, conditional on the parameters Q, the total body mass,
wij, has a distribution that is the mixture of two normal components, each having a Gompertz
mean. The latent indicator z;has the same distribution as the observed measurement status,
m;. It is the latent z; however, and not /m;, that determines the component of the normal
mixture governing w;, thereby enabling information from all animals, fully measured and
not, to contribute to estimation of both components of the normal mixture. Thus z; or
equivalently pj, is a shared random effect linking the growth model for w;to the missingness
model.

The probability that total body mass for animal 7is observed, p;, is modeled as a linear
function of length on the logit scale. This model choice follows from the work of Shotwell et
al. (2010), who investigated available predictors for the probability of missing total body
mass and concluded that only total body length was significant.
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The prior distributions for the parameters in Q were set as follows. The logistic regression
parameters (Bg, B1) have independent normal priors with mean zero and large variance
(100). The prior on a; is a non-informative log-normal distribution with large variance (log-
Normal(0,100)), since & > 0. Because unmeasured animals are expected to have greater
mean asymptotic total body mass than measured animals, we require g » & and
parameterize as ay = & + & for & = 0. We take 6 ~ [0, 50], as values over 50kg would
imply unrealistically large differences in total body mass between the two groups.
Additionally, given our knowledge that measured animals have asymptotic total body mass
approximately 175kg (males and females combined, Turner et al. 2006), & larger than 50kg
corresponds to unrealistically large masses for unmeasured animals. For marine mammals,
the Gompertz shift parameter & tends to range from 0 to 2, while the slope & ranges between
0 and 1 (see Turner et al. 2006; Stolen et al. 2002). To be relatively noninformative, we
expanded these ranges and set &, 6, ~ U(0, 5) and Ay, k&1 ~ U (0, 2). Following the
suggestion of Gelman (2006), the prior distribution for o was taken as U (0, 5).

2.3 Estimation

Model fitting and estimation were performed using R (©2006) v. 2.4.0 software. A Gibbs
sampler was designed for sampling from the joint posterior distribution. The full conditional
posterior distributions are given in the Appendix. Since many of these are nonstandard
distributions, the Metropolis—Hastings (M—-H) algorithm was used to draw samples. The
proposal distributions in the M—H algorithms were normal with a mean equal to the previous
draw’s value for that parameter (or initial value at the start). The variance of the proposal
distribution was optimized to ensure that the acceptance rate was no less than 10% (see
Tanner 1996 for review).

The number of burn-in iterations for analysis of the strandings data was determined by
evidence of convergence. Two chains were run simultaneously, and the variance between
and within chains was used to calculate the Gelman—Rubin statistic 7 (Gelman and Rubin
1992) for all model parameters. A mean Gelman—Rubin statistic of 1.10 or less (mean of the
means across the number of replications) was a criterion for convergence. Trace plots were
also examined to ensure mixing of the two chains over the iterations.

The number of burn-in iterations for the simulation study was determined using data
generated under scenario & > a; (described in Sect. 2.4.2) with A//= 100 animals and 50
run, and corresponding /s were assessed. If convergence critera were not met, an additional
10,000 iterations were run, with the process continuing until convergence was met. This
iterative process continued through 5 generated datasets, using the previous number of
iterations needed for convergence as the burn-in for the next dataset. Correlation plots for
each parameter were examined, and thinning was performed using every 5, 10, 20, 30, 40,
and 50 iterations. Convergence occurred within 210,000 burn-in iterations. Posterior
inference was based on a sample of 7000 obtained by taking a subsequent 210,000 iterations
and thinning by 30.

Initial simulation runs with the small sample size of /=50 revealed that convergence
criteria were not uniformly met with 210,000 burn-in iterations. For these simulations, we
used 420,000 burn-in iterations.
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2.4 Simulation scheme

All simulations were performed using R (©2006) v. 2.4.0 software. Simulations were
designed to achieve several goals, studying the effects on parameter estimation in model (1)
of changes in sample size, the percentage of missing data, and the difference in the
underlying values of the Gompertz parameters in pg(:) and py(:).

2.4.1 Data generation—Populations of dolphins of size A/were generated according to
the sequence animal age, then total body length, then measurement status and, lastly, total
body mass. Observed data from wild SC bottlenose dolphins (described in Sect. 2.1) were
used to ensure the simulated data were realistic. Simulated animal ages were randomly
drawn from the fit of the exponential distribution to the ages reported by NOAA
investigators for the observed SC wild dophins; this fit had mean 10.1 years. Total body
lengths were then drawn according to a Gompertz function of age consistent with prior
analyses of Turner et al. (2006) and Shotwell et al. (2010). More specifically, the total body
length for animal 7was drawn from a normal distribution with standard deviation 4 cm and
mean 250-exp(-0.75-exp(-0.35-age;)). Each animal /was then assigned a probability p;, of
being fully measured based on the logistic regression in (1) and the desired missingness
percentage (i.e. fraction not fully measured), as described below. The indicator for fully
measured, /m;, and the indicator determining the Gompertz mean for total body mass, z;,
were assigned (independently) according to a Bernoulli(p,) distribution. Finally, given age;
and z;, total body mass was generated from the corresponding normal distribution with
Gompertz mean and standard deviation o = 4 kg.

A desired missingness percentage g was achieved by determining appropriate values for g
and B4 in (1) as follows: First, the maximum probability of measurement was fixed at pmax =
0.95, corresponding to the length of Lyin = 95 cm, approximately the smallest length
observed among SC dolphins. Second, a minimum probability of measurement, fmin, Was
proposed corresponding to a length of Ly, = 275 cm, approximately the largest length
observed among SC dolphins. Using these values in model (1) determined candidate values
for Bg and B;. Five data sets of size /=100 animals were then generated using these
candidate values, and the average percentage of missingness, g,,, was calculated (upon
generation of the measurement indicators /77)). The proposed value of g, was adjusted and
the remainder of the procedure repeated until |g,, — ¢l < 0.5%, at which point the current
values of By and 1 were retained for data generation.

2.4.2 Sample size, missingness, growth differences—The sample size, N,
percentage of missing data, g, and difference in pp and iy were studied usinga 3 x 3 x 3
factorial scheme. Sample sizes of A= 50, 100, and 500 were used, reflecting plausible
strandings dataset sizes. Percentages of missing data examined were g = 20, 30, and 40 since
such large percentages are present in real data. And three growth scenarios were examined:
(1) no difference in growth between measured and not measured groups, i.e. (&, &y, ko) =
(a1, b1, k1), denoted as “ay = a;”; (2) growth in the not measured group reaches a larger
mean asymptotic total body mass at a quicker rate, with the initial fast period of growth
sooner than those that are measured, denoted as “ay > a;”; (3) same as scenario 2, but the
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magnitudes of difference are decreased (“ay > &"). Scenario 3 was used to investigate the
model fit when the two different groups are less well distinguished.

The Gompertz parameters used to generate total body masses for the animals not measured
varied, while the Gompertz parameters for the measured animals remained constant over the
simulations (a; = 160, b, = 2.0, k& = 0.175). Turner et al. (2006) found the standard error of
ato be approximately between 11 and 20, however, differences larger than 10 kg may be
unreasonable. Also, using corresponding standard errors for band & (Turner et al. 2006), the
largest differences scenario (a9 » &) had gy = 170, by = 1.7, and Ay = 0.25. The midpoints
of the differences (a4 = 165, &y = 1.85, ky = 0.21) were used for the scenario with decreased
differences (49 > &). The standard deviation used in generating total body lengths and
masses was specified as 4, resulting in mass and length distributions similar to those seen in
the real data.

2.5 Determination of simulation size

The number of replications, i.e. the number of generated data sets under one scenario, was
determined so that credible intervals for the mean differences a — &, by — b1, and ky — k&
had specified width.

Using ay — & for illustration, it was assumed that the estimated mean difference a, between

& and a; had mean &, and variance 2 The distribution of d,, the mean of the estimated
means over /m generated data sets, is then approximately normally distributed with mean &,

and variance o2 /m. Under these assumptions, /7 was selected so that, for specified margin
of error £and coverage probability 1 — a, Pr(-E< d;— 6,< E) =1 - a. Thus, m= (Zy»
o4 E)?, where z,, is the a/2 critical value from the standard normal distribution.

Approximate values for the variances of the difference in Gompertz parameters, 2, o2 and

o# were determined as the mean of the posterior means from fitting the model to 100 data
sets, each of size 100 animals generated with 50 missing total body mass under the scenario
a » &. The burn-in and sample iterations with thinning were as described in Sect. 2.3.
Using a = 0.05 and £= 2, 5 and 0.01 for the differences in &, band k; respectively, the total
number of replications /7, was determined to be 35, 23, and 15, respectively. The more
extreme situation of 50% missing total body mass was used to be conservative, driving
larger estimated variances and hence larger /m, helping to ensure that all simulation scenarios
would produce 1 — a credible intervals within the desired margin of error. Based on these
results, 50 replications for each of the 27 data generation scenarios was deemed sufficient.

2.6 Comparison analyses

In addition to our new mixture model, both regression and propensity score multiple
imputation methods were implemented for each generated dataset, using the approach of
Shotwell et al. (2010). Total body length was used to predict total body mass under
regression multiple imputation, and to predict the probability of being measured under
propensity score multiple imputation. Five completed datasets were imputed, and results
combined for estimation of one Gompertz curve.
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2.7 Simulation evaluation

3 Results

Upon convergence, the posterior means for all parameters were computed for each
simulation run. The sample mean and variance of these posterior means were computed
across the simulations and recorded. These estimated parameters were compared to the true
parameter settings to compute parameter-specific mean square errors.

Because the data were simulated, every total body mass, whether simulated as fully
measured or not, could be compared to a mean total body mass at that same age from the
fitted Gompertz model. The model mean square error was computed between the true
simulated total body mass w;and the predicted total body mass w;as

1 al N2
/N;(wl w;)”.

The model mean square errors for the complete case and multiple imputation analyses were
calculated using their respective estimated &, b, and k in the Gompertz model. In the
corresponding MSE calculation for our new Bayesian model, w;was computed as the
mixture (1 - Z) Ho(age,) + Z;p1(age;) where the tilde indicates the posterior mean.

3.1 Simulation

3.1.1 Bias—Tables 1, 2 and 3 display the relative bias and mean square errors for each
parameter. Bias was largest in the small sample size scenarios (/= 50). All three Gompertz
parameter estimates for the measured animal group (&, b1, k1) had small relative biases with
the exception of k; for one scenario (& > a1, 40% missing). Relative biases for &, &y, and kg
were moderate, with an exception for Ay when the growth groups were equal with 20%
missing data. Increasing sample size to 100 animals greatly reduced relative bias to 0-5%,
and to nearly zero for /V=500. The exceptions were B and 1, with relative biases ranging
from approximately -5 to 50% for /=50 and reducing to about —10 to 10% for /= 500.

Few trends in relative bias across percentages of missing data were evident. The relative bias
in Bo, P1, and &y tended to decrease as percentage of missing data increased. This was
apparent in sample sizes of 50 and 100 animals, but not in sample sizes of 500 animals.

There were several changes in relative bias according to the magnitude of difference
between L and p. Relative biases for &y, Bo, P1, and &y were lowest under the scenario g >
a; and increased as the two growth groups approached equality. The relative bias for Ay was
small except when the growth groups were equal with sample size //=50. All three
parameters within iy had less relative bias when g differed from g, as did . When the
growth groups were equal, o was consistently underestimated by 5-10%.

3.1.2 Parameter-specific MSE—Since mean square error is a relative measure, it cannot
be directly compared across parameters. However, in the case of this model, it may be
warranted to compare MSEs of the growth parameters (ay, by, k) to those of (ay, by, k1),
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since they share a similar interpretation. For parameters B, and 41, the estimated mean
square errors were all less than 0.01, constituting very small changes over the simulation
scenarios. Trends in estimated MSE described here are representative of the remaining
parameters.

Sample sizes of /=50 produced the largest mean square errors, and as sample size
increased, estimated mean square errors decreased. At the smallest sample size, the range of
MSEs for a5 was wider than that found for g, ranging from approximately 40-450 and 12—
265, respectively. The same holds true for the range of estimates comparing by with £, and
ko with k. For all parameters, estimated MSEs decreased to much smaller values at V=
100, with the least amount of change occurring for o. At /=500, all MSEs were estimated
to be small or close to zero.

As was the case with relative bias, MSE did not display obvious trends with percentage of
missing data. Estimated MSEs for By and £y tend to decrease as percentage of missing data
increases, while those for g; and b increase.

Differences in estimated MSEs between the growth groups decreased as sample size
increased. For Bg, o, &, by, and K, the scenario with a9 > & resulted in the lowest MSEs.
Overall, the scenarios in which 4y # a; tended to result in estimated MSEs less than those
found when there were no differences between the groups, with the exception of g and &
when NV =50. The MSEs for Ay when A/=50 again showed that equal growth groups
produced results unlike the other scenarios.

3.1.3 Model MSE—Figure 1 contains plots of the estimated mean square error across
percentage of missing data within each Gompertz mean scenario and sample size. As the
percentage of missing data increased, the estimated MSE increased for the new, complete
case, and regression multiple imputation models. The propensity score multiple imputation
model, however, had the largest MSE when the percentage of missing data was 30%.

Complete case analysis performed best for the scenarios with /=50 and & = &, and
performed similarly to the new model when gy > 4. For all other scenarios, the new model
outperformed the complete case, regression MlI, and propensity Ml in terms of model MSE.
Complete case performed second best in these other scenarios, and propensity MI performed
consistently worst in every scenario.

The sample variances of the MSEs for each model were largest for the smallest sample size,
and decreased as the sample size increased. The new model MSE sample variance tended to
increase as percentage of missing data increased, whereas no apparent trend was seen in the
complete case results. The variances of the regression and propensity multiple imputation
methods were generally larger than those found for either the new or complete case methods,
with the propensity MI methods consistently having the largest variances.
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3.2 Application

The results from fitting model (1) to the SC MMSN data are given in Table 4. The complete
cases totaled 37 animals, while the new method additionally utilized age and lengths for
those animals missing total body mass, totaling 73 animals.

The probability of being measured, based on the logistic regression parameter estimates and
the minimum/maximum total body length, ranged from 0.20 to 0.83. The mean asymptotic
total body mass between the two growth groups differed by an estimated 49 kilograms.
Animals in the measured group had a slightly higher estimated growth rate (4 = 0.287) than
the unmeasured group (Ap = 0.256), with the fast growth period occurring later (&, = 2.317;
by =1.727).

Complete case analysis resulted in estimates of 2= 172.5 (se = 10.4), b= 2.10 (se = 0.2),
and A= 0.23 (se = 0.04). Propensity score multiple imputations results (2= 171.17 (10.1), b
=2.00 (0.2), k=0.26 (0.05)) most closely resembled complete case results out of the
methods investigated. Regression multiple imputation resulted in a lower mean asymptotic
total body mass (a=163.74 (7.7)) than complete case analysis, with lower shift (6= 1.91
(0.2)) and faster growth (k= 0.27 (0.04)).

The new model is a mixture model, with different growth structures for the fully and
partially measured groups in the population. However, in keeping with the prevalent use and
interpretability of the Gompertz model, investigators may wish to have one unifying
Gompertz curve that represents the fitted new model. Toward this end, estimates of g and
B1 can be used with total body length of animal 7to estimate the probability animal 7is
measured (g,), via

logit (ﬁi):BO —i—/;’llengthi.

The weighted average total body mass, 17 is then computed from means g and i weighted
by pjas follows:

wi=(1 — p;) 1o (age;)+p; 14 (age;).

The left panel in Fig. 2 displays the observed data and the two components [10 and ﬁl of the
new model fit, together with the computed values of w; denoted by solid circles. The
Gompertz curve closest to the 17 (by least squares) is shown in the right panel (a=171.01, b
=2.20, k=0.28). Standard errors for the estimates of g, 6, and &, respectively, were 0.47,
0.02, and less than 0.01, although these standard errors ignore the uncertainty of the
estimates of the parameters in Q. The mean asymptotic total body mass for the unifying
summary curve is similar to that found by Shotwell et al. (2010) for complete case (a=
172.5, b=2.10, k= 0.23) and propensity score analysis. However, both 6and kare
estimated to be larger than those estimated in the other analyses.
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4 Discussion

Because data for modeling the growth of bottlenose dolphins is severely limited, it is
important to use all available information from strandings. By postulating that animals not
fully measured have a separate growth curve constrained to have greater asymptotic total
mass and allowing information to be shared between the fully measured and not fully
measured animals, our model provides a way to accommodate information from both of
these groups, unlike complete case analysis. The application uses all available information
and hence produces a growth curve that better reflects observed and unobserved total body
masses.

Overall, parameter estimation was not as sensitive to percentage of missing data as to sample
size and difference in growth parameters. The percentage of missing data, however, may
affect the strength of the logistic regression and hence the ability to estimate fg and p.
Generally both relative bias and MSE decreased as sample size increased and as the growth
groups increasingly differed. It is reasonable to expect such a trend, in that the more distinct
the means are, the better the estimation.

The new model performed best among the examined models, with lower mean model MSE
than the two multiple imputation methods in all simulation scenarios, and lower model MSE
than complete case in most scenarios. However, when the two groups had the same mean
growth pattern, we observed underestimation of the error variance suggesting an anticipated
overfitting. Another weakness of the new model is less precise estimation of (the greater
number of) parameters when the sample size is small. Nonetheless, when the growths differ
in small datasets, or no differences occur in large datasets, the new model is preferred over
complete case and multiple imputation methods.

Analysis of the South Carolina MMSN data revealed a large difference in asymptotic total
body mass for the measured and unmeasured components of the mixture. The complete case
asymptotic total body mass is closer to gy than &, consistent with the underlying assumption
(of complete case analysis) that the measured animals are representative of the unmeasured
animals. The low estimate for & may emphasize how rarely large animals are indeed
measured and how, when measured, these animals may have a large influence on the
asymptote in complete case analysis. The estimated growth rate is slightly faster for
measured than unmeasured animals, while the initial growth spurt occurs later. The
unmeasured group achieves larger sizes with the fastest growth period occurring sooner, but
the overall growth rate is slightly lower than the measured group.

The complete case analysis from Shotwell et al. (2010) may underestimate the initial growth
in total body mass, while overestimating asymptotic total body mass. In comparison to the
new model, the complete case model may weight the largest overall total body mass too
heavily, while not weighting the larger total body masses for the younger ages enough. The
regression multiple imputation curve follows closely the unweighted mean of the two new
method growth curves (i.e., the midpoint curve), suggesting its usefulness when missingness
is not due to animal size. The propensity multiple imputation curve most closely follows the
total body mass curve of the unmeasured animals, with poorer fit in the juvenile to adult
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ages. The uncertainty at these middle ages may be due to the logistic regression fit, in which
the probability an animal is measured is close to 0.50 in this age range.

It is possible the animal with a total body mass greater than 240 kg is part of the offshore
population. It was not excluded in the analysis, however, since other animals in the dataset
may also be offshore animals, as definitive distinction is difficult. Offshore animals tend to
be larger in body size than the resident population (Mead and Potter 1995), and hence would
be fully measured less frequently. A benefit of our mixture model is that it could be adapted
in future work to separate the offshore and resident populations with two different
underlying growth scenarios. Some applications may call for an additional model extensions
to heterogeneous variances for the mixture components or variance as a function of age.

Investigators are advised to focus interpretation on the Gompertz growth parameters in the
two components of the mixture. However, the weighted average curve discussed in Sect. 4
and shown in Fig. 2 for the South Carolina MMSN data provides a unified curve that does
adjust for bias due to missingness.
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Full conditional posterior distributions for all model parameters.
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Comparison of missing data methods. The mean MSE across the replications for the new
method is shown in the solid line, complete case method in the dashed line, regression Ml
method in the dotted line, and propensity Ml method in the mixed dash-dot line. The median
standard deviation of these MSE values is 69.3 for propensity Ml and in the range 26 for

the other methods
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Fig. 2.

ngghted average and subsequent Gompertz curve from the new mixture model. The South
Carolina data are represented by hollow circles and the calculated weighted averages are
represented by solid circles. The two Gompertz curves resulting from the mixture model are
shown in solid lines, while the Gompert curve fit to the weighted averages is shown in the
dashed line
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Table 4
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Posterior means and standard deviations (SD) for model (i) parameters from the fit to the SC MMSN data

Parameter Mean SD

Bo 2.869 0.675
B1 -0.015 0.004
a 186.797  3.192
b 1727 0.063
ko 0.256 0.025
a 137.734 3.141
by 2.317 0.093
k 0.287 0.017
(] 4.973 0.027
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