U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Atmospheric pattern-based predictions of S2S sea-level anomalies for two selected US locations



Details

  • Journal Title:
    Artificial Intelligence for the Earth Systems
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    With climate change causing rising sea-levels around the globe, multiple recent efforts in the United States have focused on the prediction of various meteorological factors that can lead to periods of anomalously high-tides despite seemingly benign atmospheric conditions. As part of these efforts, this research explores monthly-scale relationships between sea-level variability and atmospheric circulation patterns, and demonstrates two options for sub-seasonal to seasonal (S2S) predictions of anomalous sea-levels using these patterns as inputs to artificial neural network (ANN) models. Results on the monthly scale are similar to previous research on the daily scale, with above-average sea-levels and an increased risk of high-water events on days with anomalously low atmospheric pressure patterns and wind patterns leading to on-shore or downwelling-producing wind stress. Some wind patterns show risks of high-water events to be over 6-times higher than baseline risk, and exhibit an average water level anomaly of +94mm above normal. In terms of forecasting, nonlinear autoregressive ANN models with exogenous input (NARX models) and pattern-based lagged ANN (PLANN) models show skill over post-processed numerical forecast model output, and simple climatology. Damped-persistence forecasts and PLANN models show nearly the same skill in terms of predicting anomalous sea-levels out to 9 months of lead time, with a slight edge to PLANN models, especially with regard to error statistics. This perspective on forecasting – using predefined circulation patterns along with ANN models – should aid in the real-time prediction of coastal flooding events, among other applications.
  • Source:
    Artificial Intelligence for the Earth Systems (2023)
  • DOI:
  • ISSN:
    2769-7525
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha256:880ce520f98cd7a9242bbf35e4ad5ebd123457eded9ac96fd0d097fa17ea038e
  • Download URL:
  • File Type:
    Filetype[PDF - 2.86 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.