Hybrid Survey Networks: Combining Real-Time and Static GNSS Observations for Optimizing Height Modernization
-
2018
Details
-
Journal Title:Journal of Surveying Engineering
-
Personal Author:
-
NOAA Program & Office:
-
Description:To derive ellipsoid heights on passive marks with centimeter-level accuracy, many current specifications require the collection and adjustment of long-duration, static, postprocessed global navigation satellite system (GNSS) sessions. To increase efficiency, a campaign-style survey procedure that includes real-time kinematic (RTK) vectors from a real-time GNSS network was evaluated. Thirty different hybrid networks involving three to nine network RTK (NRTK) vectors per mark and some static GNSS vectors were developed from surveys completed in Oregon and South Carolina. The variance-covariance matrices of the static and kinematic vectors were scaled by variance-component estimation procedures to produce realistic error estimates for stochastic modeling. After least-squares adjustment and formal random-error propagation of the networks, the resulting ellipsoid heights on the passive marks had network accuracies ranging from 0.6 to 3.6 cm (95% confidence). These network accuracies reduced to < 2 cm when using six or more NRTK observations per mark. Further, the use of NRTK vectors obtained from observables of both the U.S. global positioning system (GPS) and Russia’s GNSS (GLONASS) were, on average, 19.2% more accurate vertically than vectors obtained solely from GPS observables.
-
Keywords:
-
Source:Journal of Surveying Engineering, 144(1)
-
DOI:
-
ISSN:0733-9453 ; 1943-5428
-
Publisher:
-
Document Type:
-
Funding:
-
Rights Information:Accepted Manuscript
-
Rights Statement:The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
-
Compliance:Submitted
-
Main Document Checksum:urn:sha-512:245dba822b096cc09d3cdbd3d3d83b2d974b7d2665b392107e1f26e0064b70918145c611ac35f402eade9acddc45c0c3c9975bd0916cca23a655d4341abf1e64
-
Download URL:
-
File Type:
ON THIS PAGE
The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles,
guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the
NOAA IR retains documents in their original published format to ensure public access to scientific information.
You May Also Like