Source regions contributing to excess reactive nitrogen deposition in the Greater Yellowstone Area (GYA) of the United States
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Source regions contributing to excess reactive nitrogen deposition in the Greater Yellowstone Area (GYA) of the United States

Filetype[PDF-3.25 MB]



Details:

  • Journal Title:
    Atmospheric Chemistry and Physics
  • Description:
    Research has shown that excess reactive nitrogen (Nr) deposition in the Greater Yellowstone Area (GYA) of the United States has passed critical load (CL) thresholds and is adversely affecting sensitive ecosystems in this area. To better understand the sources causing excess Nr deposition, the Comprehensive Air Quality Model with Extensions (CAMx), using Western Air Quality Study (WAQS) emission and meteorology inputs, was used to simulate Nr deposition in the GYA. CAMx's Particulate Source Apportionment Technology (PSAT) was employed to estimate contributions from agriculture (AG), oil and gas (OG), fire (Fire), and other (Other) source sectors from 27 regions, including the model boundary conditions (BCs) to the simulated Nr for 2011. The BCs were outside the conterminous United States and thought to represent international anthropogenic and natural contributions. Emissions from the AG and Other source sectors are predominantly from reduced N and oxidized N compounds, respectively. The model evaluation revealed a systematic underestimation in ammonia (NH3) concentrations by 65 % and overestimation in nitric acid concentrations by 108 %. The measured inorganic N wet deposition at National Trends Network sites in the GYA was overestimated by 31 %–49 %, due at least partially to an overestimation of precipitation. These uncertainties appear to result in an overestimation of distant source regions including California and BCs and an underestimation of closer agricultural source regions including the Snake River valley. Due to these large uncertainties, the relative contributions from the modeled sources and their general patterns are the most reliable results. Source apportionment results showed that the AG sector was the single largest contributor to the GYA total Nr deposition, contributing 34 % on an annual basis. A total of 74 % of the AG contributions originated from the Idaho Snake River valley, with Wyoming, California, and northern Utah contributing another 7 %, 5 %, and 4 %, respectively. Contributions from the OG sector were small at about 1 % over the GYA, except in the southern Wind River Mountain Range during winter where they accounted for more than 10 %, with 46 % of these contributions coming from OG activities in Wyoming. Wild and prescribed fires contributed 18 % of the total Nr deposition, with fires within the GYA having the highest impact. The Other source category was the largest winter contributor (44 %) with high contributions from California, Wyoming, and northern Utah.
  • Source:
    Atmospheric Chemistry and Physics, 18(17), 12991-13011
  • Document Type:
  • Place as Subject:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26