Reconstructing past climate by using proxy data and a linear climate model
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Reconstructing past climate by using proxy data and a linear climate model

Filetype[PDF-2.37 MB]



Details:

  • Journal Title:
    Climate of the Past Discussions
  • Description:
    In this work we improve the skill of climate field reconstructions (CFRs) through the use of an online paleoclimate data assimilation (PDA) method within the Last Millennium Reanalysis framework (LMR). A computationally cheap forecast model, known as a linear inverse model (LIM), is employed here to provide 1-year forecasts between analysis times of the reconstruction. CFRs of annual mean 2m air temperature are compared between the previous offline and new online method. We test LIMs calibrated on surface temperatures from the Berkeley Earth observational dataset, the 20th Century Reanalysis (20CR), and coupled general circulation model last-millennium simulations (Community Climate System Model v4, CCSM4; Max Planck Institute Earth System Model, MPI). In all cases skill metrics are assessed for both spatial fields and global averages. Generally, we find that the usage of online PDA can increase reconstruction agreement with the instrumental record for both spatial fields and the global mean temperature (GMT). Spatial field skill increases tend to occur over Northern Hemisphere land areas and in the high-latitude North Atlantic - Barents Sea corridor. These regions of increased skill are associated with better agreement in temperature anomaly amplitude or trend, and not associated with changes in anomaly timing. Overall, the CCSM4 LIM provides the best performance when considering both spatial fields and GMT. A comparison with a persistence forecast experiment suggests that the skill of LIM forecasts are associated with the usage of the LIM, rather than simply the persistence of existing temperature anomalies. Results from this study are directly applicable in providing more dynamically consistent CFRs over the past two millennia.
  • Source:
    Clim. Past Discuss.
  • Format:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    CHORUS
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26