Development and Validation of a Long Term, Global, Terrestrial Sensible Heat Flux Dataset
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


Development and Validation of a Long Term, Global, Terrestrial Sensible Heat Flux Dataset

Filetype[PDF-3.17 MB]


  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Sensible heat flux is a turbulent flux driving interactions between the Earth’s surface and the atmosphere, propelling local and regional climate. While turbulent fluxes are measured in situ, global scales require estimates at larger spatial scales, which can be made using remotely sensed satellite data. This study uses a first-order approximation to calculate the unconstrained hourly, terrestrial, 0.5°-resolution sensible heat flux using a land surface temperature consistent with the High Resolution Infrared Radiation Sounder (HIRS) retrievals, six reanalysis-based air temperature products, and a dataset of Zilitinkevich empirical constant Czil values. This sensible heat flux dataset is constrained using the daily Bowen ratio and available energy, to produce nine constrained, daily products. All resulting global, terrestrial averages are within the uncertainty range of ±6.3 W m−2 from the 38.8 W m−2 global annual average previously reported in the literature. The product constrained with the net radiation using the Moderate Resolution Infrared Spectroradiometer (MODIS) albedo and air temperature from the National Centers for Environmental Protection (NCEP) Climate Forecast System Reanalysis (CFSR) performs closest to the FLUXNET ground observations in the monthly analysis. These sensible heat flux estimates should be used for benchmarking global climate models at monthly or annual scales, and improvements should be made to the accuracy of input variables, particularly the temperature gradient, Czil estimates, and the roughness length.
  • Keywords:
  • Source:
    J. Clim. (2018) 31(15): 6073–6095
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

Related Documents

You May Also Like