i
Design for a portable calibration system for the Full-sun UV Rocket SpecTrometer instrument
-
2021
-
-
Source: J. Astron. Telesc. Instrum. Syst. 7(3) 035009
Details:
-
Journal Title:Journal of Astronomical Telescopes, Instruments, and Systems
-
Personal Author:
-
NOAA Program & Office:
-
Description:The Full-sun Ultraviolet Rocket SpecTrograph (FURST) is a sounding rocket designed to acquire the first full-disk integrated high resolution vacuum ultraviolet (VUV) spectra of the Sun. The data enable analysis of the Sun comparable to stellar spectra measured by astronomical instruments such as those on board the Hubble Space Telescope. The mission is jointly operated by teams at Montana State University (MSU), developing the instrument, and Marshall Space Flight Center (MSFC), developing the camera and calibration systems, and is scheduled to launch from White Sands Missile Range, New Mexico, in 2022. This mission requires the development of a pre- and post-launch calibration plan for absolute radiometric and wavelength calibration to reliably generate Hubble analogue spectra. Absolute radiometric calibration, though initially planned to be performed at the National Institute for Standards and Technology (NIST) calibration facilities, is now planned to be completed with a portable VUV calibration system provided by MSFC, due to instrument incompatibilities with NIST infrastructure. The portable calibration system is developed to provide absolute wavelength calibration and track changes in calibration over the duration of the mission. The portable calibration system is composed mainly of a VUV collimator equipped with an extreme ultraviolet line source and calibrated photodiodes. The calibration system is developed to accommodate both repeatable wavelength and radiometric testing of the FURST instrument at various test sites before and after launch. Presented here are the requirements, design, and implementation of this portable calibration system with a focus on those features most significant to radiometric measurements.
-
Keywords:
-
Source:J. Astron. Telesc. Instrum. Syst. 7(3) 035009
-
DOI:
-
Format:
-
Document Type:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: