Evaluating Smartphone Pressure Observations for Mesoscale Analyses and Forecasts
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Evaluating Smartphone Pressure Observations for Mesoscale Analyses and Forecasts

Filetype[PDF-4.29 MB]



Details:

  • Journal Title:
    Weather and Forecasting
  • NOAA Program & Office:
  • Description:
    Smartphone pressure observations have the potential to greatly increase surface observation density on convection-resolving scales. Currently available smartphone pressure observations are tested through assimilation in a mesoscale ensemble for a 3-day, convectively active period in the eastern United States. Both raw pressure (altimeter) observations and 1-h pressure (altimeter) tendency observations are considered. The available observation density closely follows population density, but observations are also available in rural areas. The smartphone observations are found to contain significant noise, which can limit their effectiveness. The assimilated smartphone observations contribute to small improvements in 1-h forecasts of surface pressure and 10-m wind, but produce larger errors in 2-m temperature forecasts. Short-term (0–4 h) precipitation forecasts are improved when smartphone pressure and pressure tendency observations are assimilated as compared with an ensemble that assimilates no observations. However, these improvements are limited to broad, mesoscale features with minimal skill provided at convective scales using the current smartphone observation density. A specific mesoscale convective system (MCS) is examined in detail, and smartphone pressure observations captured the expected dynamic structures associated with this feature. Possibilities for further development of smartphone observations are discussed.
  • Source:
    Weather and Forecasting, 32(2), 511-531
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    CHORUS
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.24