Smartphone Pressure Collection and Bias Correction Using Machine Learning
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Smartphone Pressure Collection and Bias Correction Using Machine Learning

Filetype[PDF-3.50 MB]



Details:

  • Journal Title:
    Journal of Atmospheric and Oceanic Technology
  • Description:
    Over half a billion smartphones worldwide are now capable of measuring atmospheric pressure, providing a pressure network of unprecedented density and coverage. This paper describes novel approaches for the collection, quality control, and bias correction of such smartphone pressures. An Android app was developed and distributed to several thousand users, serving as a test bed for onboard pressure collection and quality-control strategies. New methods of pressure collection were evaluated, with a focus on reducing and quantifying sources of observation error and uncertainty. Using a machine learning approach, complex relationships between pressure bias and ancillary sensor data were used to predict and correct future pressure biases over a 4-week period from 10 November to 5 December 2016. This approach, in combination with simple quality-control checks, produced an 82% reduction in the average smartphone pressure bias, substantially improving the quality of smartphone pressures and facilitating their use in numerical weather prediction.
  • Source:
    Journal of Atmospheric and Oceanic Technology, 35(3), 523-540
  • ISSN:
    0739-0572;1520-0426;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26