Impacts of Assimilating Smartphone Pressure Observations on Forecast Skill during Two Case Studies in the Pacific Northwest
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Impacts of Assimilating Smartphone Pressure Observations on Forecast Skill during Two Case Studies in the Pacific Northwest

Filetype[PDF-4.88 MB]



Details:

  • Journal Title:
    Weather and Forecasting
  • Description:
    Over a half-billion smartphones are now capable of measuring atmospheric pressure, potentially providing a global surface observing network of unprecedented density and coverage. An earlier study by the authors described an Android app, uWx, that served as a test bed for advanced quality control and bias correction strategies. To evaluate the utility and quality of the resulting smartphone pressure observations, ensemble data assimilation experiments were performed for two case studies over the Pacific Northwest. In both case studies, smartphone pressures improved the analyses and forecasts of assimilated and nonassimilated variables. In case I, which considered the passage of a front across the region, cycled smartphone pressure assimilation consistently improved 1-h forecasts of the altimeter setting, 2-m temperature, and 2-m dewpoint. During a postfrontal period, cycled smartphone pressure assimilation improved mesoscale forecasts of hourly precipitation accumulation. In case II, which considered a major coastal windstorm, cycling experiments assimilating smartphone pressures improved 10-m wind forecasts as well as the predicted track and intensity. For both cases, free-forecast experiments initialized with smartphone data produced forecast improvements extending several hours, suggesting the utility of crowdsourced smartphone pressures for short-term numerical weather prediction.
  • Source:
    Weather and Forecasting, 33(5), 1375-1396
  • ISSN:
    0882-8156;1520-0434;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26