Constraining Fossil Fuel CO2 Emissions From Urban Area Using OCO-2 Observations of Total Column CO2
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Constraining Fossil Fuel CO2 Emissions From Urban Area Using OCO-2 Observations of Total Column CO2

Filetype[PDF-26.39 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Geophysical Research: Atmospheres
  • Description:
    Satellite observations of the total column dry-air CO2 (XCO2) are expected to support the quantification and monitoring of fossil fuel CO2 (ffCO2) emissions from urban areas. We evaluate the utility of the Orbiting Carbon Observatory 2 (OCO-2) XCO2 retrievals to optimize whole-city emissions, using a Bayesian inversion system and high-resolution transport modeling. The uncertainties of constrained emissions related to transport model, satellite measurements, and local biospheric fluxes are quantified. For the first two uncertainty sources, we examine cities of different landscapes: “plume city” located in relatively flat terrain, represented by Riyadh and Cairo; and “basin city” located in basin terrain, represented by Los Angeles (LA). The retrieved scaling factors of emissions and their uncertainties show prominent variabilities from track to track, due to the varying meteorological conditions and relative locations of the tracks transecting plumes. To explore the performance of multiple tracks in retrieving emissions, pseudo data experiments are carried out. The estimated least numbers of tracks required to constrain the total emissions for Riyadh (<10% uncertainty), Cairo (<10%), and LA (<5%) are 8, 5, and 7, respectively. Additionally, to evaluate the impact of biospheric fluxes on derivation of the ffXCO2 enhancements, we conduct simulations for Pearl River Delta metropolitan area. Significant fractions of local XCO2 enhancements associated with local biospheric XCO2 variations are shown, which potentially lead to biased estimates of ffCO2 emissions. We demonstrate that satellite measurements can be used to improve urban ffCO2 emissions with a sufficient amount of measurements and appropriate representations of the uncertainty components.
  • Source:
    JGR Atmospheres 125(8): e2019JD030528
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.20