U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

An Algorithm to Bias-Correct and Transform Arctic SMAP-Derived Skin Salinities into Bulk Surface Salinities

Supporting Files


Details

  • Journal Title:
    Remote Sensing
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    An algorithmic approach, based on satellite-derived sea-surface (“skin”) salinities (SSS), is proposed to correct for errors in SSS retrievals and convert these skin salinities into comparable in-situ (“bulk”) salinities for the top-5 m of the subpolar and Arctic Oceans. In preparation for routine assimilation into operational ocean forecast models, Soil Moisture Active Passive (SMAP) satellite Level-2 SSS observations are transformed using Argo float data from the top-5 m of the ocean to address the mismatch between the skin depth of satellite L-band SSS measurements (∼1 cm) and the thickness of top model layers (typically at least 1 m). Separate from the challenge of Argo float availability in most of the subpolar and Arctic Oceans, satellite-derived SSS products for these regions currently are not suitable for assimilation for a myriad of other reasons, including erroneous ancillary air-sea forcing/flux products. In the subpolar and Arctic Oceans, the root-mean-square error (RMSE) between the SMAP SSS product and several in-situ salinity observational data sets for the top-5 m is greater than 1.5 pss (Practical Salinity Scale), which can be larger than their temporal variability. Thus, we train a machine-learning algorithm (called a Generalized Additive Model) on in-situ salinities from the top-5 m and an independent air-sea forcing/flux product to convert the SMAP SSS into bulk-salinities, correct biases, and quantify their standard errors. The RMSE between these corrected bulk-salinities and in-situ measurements is less than 1 pss in open ocean regions. Barring persistently problematic data near coasts and ice-pack edges, the corrected bulk-salinity data are in better agreement with in-situ data than their SMAP SSS equivalent.
  • Keywords:
  • Source:
    Remote Sens., 14(6), 1418
  • DOI:
  • Document Type:
  • Place as Subject:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha256:e5694f27df4cb9560870d642e7df7533bec90c2ef6b696dbdd882f7621ff1e4c
  • Download URL:
  • File Type:
    Filetype[PDF - 3.09 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.