Random Forest Approach for Improving Nonconvective High Wind Forecasting across Southeast Wyoming
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Random Forest Approach for Improving Nonconvective High Wind Forecasting across Southeast Wyoming

Filetype[PDF-5.61 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Weather and Forecasting
  • NOAA Program & Office:
  • Description:
    High winds are one of the key forecast challenges across southeast Wyoming. The complex mountainous terrain across the region frequently results in strong gap winds in localized areas, as well as more widespread bora and chinook winds in the winter season (October–March). The predictors and general weather patterns that result in strong winds across the region are well understood by local forecasters. However, no single predictor provides notable skill by itself in separating warning-level events from others. Random forest (RF) classifier models were developed to improve upon high wind prediction using a training dataset constructed of archived observations and model parameters from the North American Regional Reanalysis (NARR). Three locations were selected for initial RF model development, including the city of Cheyenne, Wyoming, and two gap regions along Interstate 80 (Arlington) and Interstate 25 (Bordeaux). Verification scores over two winters suggested the RF models were beneficial relative to current operational tools when predicting warning-criteria high wind events. Three case studies of high wind events provide examples of the RF models’ effectiveness to forecast operations over current forecast tools. The first case explores a classic, widespread high wind scenario, which was well anticipated by local forecasters. A more marginal scenario is explored in the second case, which presented greater forecast challenges relating to timing and intensity of the strongest winds. The final case study carefully uses Global Forecast System (GFS) data as input into the RF models, further supporting real-time implementation into forecast operations.
  • Source:
    Weather and Forecasting, 38(1), 47-67
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26