Cholesky factorization and matrix inversion
-
1973
Details
-
Personal Author:
-
Corporate Authors:
-
NOAA Program & Office:
-
Description:The Cholesky square root algorithm used in the solution of linear equations with a positive definite matrix of coefficients is developed by elementary matrix algebra, independent of the Gaussian elimination from which it was originally derived. The Cholesky factorization leads to a simple inversion procedure for the given matrix. A simple transformation makes the inversion applicable to nonsymmetric matrices. The least squares hypothesis is shown to be the simplest and most general unique solution of a system of linear equations with a nonsquare matrix of coefficients. The method of proof is extended to develop the Gaussian elimination algorithm in a readily comprehensible procedure.
-
Keywords:
-
Series:
-
Document Type:
-
Rights Information:Public domain
-
Compliance:Library
-
Main Document Checksum:urn:sha-512:452f66955dee35d8c68dfb04afee74bca48698c6a6d87806f05de35306781e6404aac636f3f82b6136a4efc9deee7743dddf983708d4f97612975f92008ec0a0
-
Download URL:
-
File Type:
ON THIS PAGE
The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles,
guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the
NOAA IR retains documents in their original published format to ensure public access to scientific information.
You May Also Like
COLLECTION
National Ocean Service (NOS)