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Cholesky Factorization and Matrix Inversion

ERWIN SCHMID |

ABSTRACT.

The Cholesky square root algorithm used in the solution of

linear equations with a positive definite matrix of coefficients is developed by
elementary matrix algebra, independent of the Gaussian elimination from which
it was originally derived. The Cholesky factorization leads to a simple inversion
procedure for the given matrix. A simple transformation makes the inversion
applicable to nonsymmetric matrices. The least squares hypothesis is shown to be
the simplest and most general unique solution of a system of linear equations with
a nonsquare matrix of coefficients. The method of proof is extended to develop the
Gaussian elimination algorithm in a readily comprehensible procedure.

1. FACTORIZATION OF THE NORMAL
EQUATIONS MATRIX

The Cholesky algorithm for solving a set of normal
equations, in the sense as used in geodesy, follows
quite readily from the earlier Doolittle solution,
now known as Gauss-Doolittle, which in turn is
developed in the textbooks as a special case of
Gaussian elimination applicable to a general set of
linear equations. Although Doolittle’s only publica-
tion (U.S. Coast and Geodetic Survey, 1881) on
the subject is merely a presentation of the procedure
without proof or reference to source, there is little
doubt that his algorithm is based directly, or possibly
by way of a translation such as Bertrand (1855),
on a method for solving (symmetric) normal equa-
tions which Gauss (1811a) proposed and proved

In any case, the Cholesky algorithm can be readily
established with elementary matrix algebra. Since
this algorithm is well documented, we limit our-
selves to a heuristic approach with a 4 x 4 matrix
which can readily be generalized to an nXn.

The product CCT of a lower triangular, nonsingular
matrix with real coefficients

some time before he developed the general : : Ol
“Gaussian elimination.” and its transpose CT is (row on row multiplication
of C)

CcnCn c1iCi12 Cc11C13 Cc11C14

C11C12 C12C12-F C22C22 C12C13 "F C22C23 C12C14 + C22C24
CCT=

CcliCi3 C12C13+ C22C23 C13C13+ C23C23+C33C33 (C13C14-F C23C24 + C33C34

\CIICi4  ci12c14+ C22C24 C13C14 -F C23C24 "F C33C34 C14C14-F C24C24+ ~34734+ CA4G

“National Ocean Survey, National Oceanic and Atmospheric Administration.



a symmetric matrix which is positive definite, since
det (CCT) =det (C) ! det (Cr) = [det (C)j]2. Arrang-

rows labeled (1), (2), (3), and (4), and deleting the
redundant terms below the diagonal, gives the

ing this product matrix, as is customary, in alternate  scheme:

(1) CnCn C11C12 CnCi. C11C14

™McCn CR

) C12C12 *H C22C22 C12C13-1-C22C:23 C12C14+ C22C24

(2"

©) CisCiz~\- C23Ca23 -\-C33Cs3 C13C14 + C23Cas “I" C33Caas

(3) >34

(4) C14C14+ C24C24+ C34C34+C44C44
(4)

From (1) the matrix C can be reconstructed in rows
aH, @Y, (3), and (4" in that order. This re-
versal of the multiplication procedure results in the
Cholesky algorithm. We now assume the matrix
CCT given as a symmetric positive definite matrix
N with entries riik. In row (T) are developed the
entries of the first column of C. The first term of
(1" is evidently the square root of the first term
of row (1), and the remaining terms are obtained by
dividing the corresponding term of row (1) by the
first term of row (1'). In row (2) the first term is
“reduced” by the product of Ci2, the term immedi-
ately above it, multiplied by itself; and the root of
the difference gives C22. The other terms in that row
are reduced by the product of CI2 and the cor-
responding term of the pertinent column; then the
remainder is divided by C22. This completes row
(2") which is the second column of C.

The element nik in the ith row and kth column

(i ™ k) of the given matrix is

filc = CliCik + C2iCok++ + + + CiiCik— 2 CriCrk 2
r=1

as is easily verified by multiplication of the ith row

of C with the Ajth. Writing the expression (2) in

the form

cucik=Tik ® cricrk 3)

r=I

displays the complete algorithm in a single formula.
The first factor Cn in the summation represents all
the entries in the column of the diagonal term situ-
ated above this term and previously reduced. The
second factor Crk represents similar terms in the
column of the term riik being reduced. For the di-
agonal term (k=i), which is computed first in a
given row, the indicated reduction on the right-hand

@)

side of (3) results in CuCu which requires a square
root extraction. The other terms Cik in the row
(k=1i) are obtained by division with Cu.

A simple numerical example will illustrate the
algorithm and point out some computational char-
acteristics that are difficult to formalize algebrai-

cally.
Example 1. . - . .
Given is the positive definite symmetric matrix
729 432 621 405\
432 1856 1928 560 |
N=
621 1928 2054 685
405 560 685 741/

to be factored into the product of a lower triangular
matrix C times its transpose CT. The entries of each
row, beginning with the diagonal term, are written
below in alternate rows as in (1).

729 432 621 405
27 16 23 15

1856 1928 560
40 39 8
2054 685
2 14
741
16



The entries of the triangular matrix to be com-
puted are written directly below the corresponding
term of the given matrix. For example, 7134 = 685
of the given matrix is reduced by 23 x 15+ 39 x 8=
657, 685 —657=28 which, divided by the diagonal
term 2, gives the reduced term C34 = 14. A complete
numerical check on the computations consists in
multiplying the computed triangular matrix by
itself, column by column, since it is presented in
the above scheme in its transposed position.

In order to make the algorithm readily compre-
hensible, the above example was designed so that
all the numerical operations result in exact integers.
This hides the effect of error accumulation in the
general case. Extra significant figures must be
carried in all the computations because all the
entries cIm of the answer are, in accordance with
(3), the result of a difference of two numbers of
roughly the same magnitude. The situation is aggra-
vated when a reduced diagonal term is small rela-
tive to those previously reduced. If, for example,
due to error accumulation, <23 =39 in the example
were increased to 39.05 the reduced diagonal term
in the next row would become (2054 —232—
39.052)1/2=0.31 instead of 2, a completely erroneous
figure which would falsify all subsequent results,
particularly the entries in that row.

By changing the diagonal terms of the given
matrix N of the numerical example very slightly,
say by adding 1 to each of these diagonal terms and
factoring the resulting matrix, we should obtain
numbers close to those obtained before but now no
longer exact or rational. Operating with floating
decimal point to four significant figures (not deci-
mals), since this is the largest number of digits
given in the problem, and comparing the result
with that obtained with a larger number of signifi-
cant digits, it will be found that:

1. The results are correct to roughly four figures
in the first two rows, i.e., as long as the reduced
diagonal terms are of the same decimal magnitude.

2. The diagonal term of the third row again re-
duces to a number which is no greater than 1/10
of the two previously reduced diagonals, i.e., roughly
one magnitude smaller. The figures in this row are
found to be good to two digits only, and the degra-
dation of accuracy is carried into all subsequent
computations.

3. With six-figure floating point precision the
factorization will prove correct to at least four
digits in all the numbers of the result.

By constructing a problem in which a diagonal
term reduces to a number two magnitudes smaller
than the previously reduced diagonals, it will be
found that four additional significant digits are
needed. In general we may conclude that if the ratio
of the largest reduced diagonal to the smallest is on
the order of 10*, the solution requires at least n + 2k
significant digits to approximate /i-figure accuracy in
all the entries of the reduced matrix. Computing
with less precision may result in the small diagonal
term reducing to zero or a small quantity which

represents merely computer “noise,” and conse-
quently a completely erroneous result.

There is no practical advantage in formulating
such criteria more rigorously because the reduced
diagonals are not even approximately known before-
hand, but are developed in the solution. They can
only indicate the precision of the solution when it is
complete (unless, of course, it breaks down before
that) and the increase in needed precision if a repeti-
tion of the factorization seems indicated. The check
on the solution, mentioned above, of multiplying
C by CT and comparing the result with the given
matrix N will spot blunders but is not sensitive to
this type of error accumulation, any more than sub-
stitution of approximated roots back into an alge-
braic equation for example. In both cases error
compensation masks the location and the amount of
errlgrr(.)m equation (3) it follows that the Cholesky
factorization is unique except for the ambiguity in
sign introduced when i =k and the consequent root
extraction to find Ca from Cf. However, a second
and equally valid and useful factorization of a normal
matrix can be found, analogous to the development
above, by postulating a product DTD, where DT
is an upper triangular matrix, instead of CCT.
Writing this product in terms of the elements due
of d, it will be readily apparent that the correspond-
ing algorithm starts at the lower right-hand corner of
the given matrix N and proceeds up the last column
(or row) of the matrix and, in sequence, through the
matrix from right to left (or upward).

2. INVERSION OF A TRIANGULAR MATRIX

One of the most useful applications of the Cholesky
factorization lies in the direct inversion of a sym-
metric positive definite matrix N, which in the
present context we designate a normal matrix, such
as is encountered in the normal equations of least
squares theory. The method is easy to comprehend,
economical in computing space and time, and
capable of optimal refinement of precision to a
specified number of digits. Basically all that is
required is the inversion of the triangular matrix C
obtained in the Cholesky factorization of N. From
N=CCT it follows that

N~I= (Cr)-1C"1= (C-1)I-I 4)

The inversion of a triangular matrix C is a relatively
simple algorithm to execute. Consideration of a
3X3 upper triangular matrix

Cn Ci12 Ci3 \
C
0 C2 Cu

Css \]

0 . 0
should be sufficient to indicate the sequence of



operations and their validity for any size and type of
triangular matrix. The nonsingularity and inverti-
bility of a triangular matrix are apparent from the
criterion that, for all £, Cut®O. We postulate for
the inverse an upper triangular matrix (Ci)-1 with
undetermined coefficients yik

yn yi2 i3
Cn“l=( 0 y2 y»

0 0 y3

and set the condition CT(CT) -1 =/, the unit matrix
of order 3. In order to make the algorithm more
convenient for visual presentation and hand opera-
tion, we write the inverse in transposed form C-:
underneath the given matrix CT so that the matrix
multiplication can be performed row by row:

@)
CT= 4)
0 Q () )
0 @ -l
Ci= v (2) 1
y2s (3)-1

The numbers on the right designate the respective
rows of the given matrix and of the desired inverse.
Since the product must equal /, each row multiplied
by the corresponding primed row =1, and =0
otherwise. In the arrangement of the matrices
according to (5) it is convenient to start with the last
row (3)-1 of C 1 and multiply it in turn with row (3),
(2), and (1), setting the products equal to 1, 0, and 0
respectively. Each multiplication yields a new y
entry. Thus the first three conditions read

y33Cass
y33C2S H* y23Ca2
y33Ci3 H" y23Ci2 H- yi3Cn

1
0 ©)
o

With an n x n matrix CT there would have been n
such equations. From the first of equations (5) we
get the diagonal term y33 = 1/C33, the reciprocal of
the diagonal term of the given matrix, a relation
which holds for all the diagonal terms. Substituting
this value in the second of equations (6) gives
y23 = y33C23/—C22, and with both y33 and y23 in the
third of equations (6) yi3 = (y33Ci3 + y23Ci2)/ — Cn.
This completes row (3)_1, and we proceed to evaluate
row (2)_ 1 in similar fashion by multiplying it in order
with rows (2) and (1). The multiplication with row (3)
is unnecessary, since it imposes no new condition on

the coefficients. It merely proves the validity of our
original assumption, i.e., that the inverse is the same
type of triangular matrix.

Generally, we start with the bottom row of the
inverse and compute its entries in turn, from right
to left, by accumulating the products of the y’s
(which were previously computed and entered)
times the corresponding C’s in the given matrix and
in the row above that used just previously.

Example z:

A simple numerical example will illustrate that
the algorithm is easier to perform than to formulate
in words. Given, to invert the triangular matrix

1 2 3

The significant portion of the matrix is written
above the solid line, and the transpose of the inverse
is developed immediately below in the space
occupied by the omitted zeros.

L1 2

I 1 4
12 14
-1/12 -5/24

Starting with the diagonal term of the third row, the
corresponding term of the inverse is the reciprocal
1/6. The adjacent term is """ =—_5/24, and

the next is (1/6)(3)-H2)(-S;2«)=__i;,2 The

next row from the bottom is computed similarly,
starting with the diagonal term 1/4 and continuing

It should be noted that:

a) The above arrangement is for compactness in
hand computing but also indicates the possibility
for similar space saving in computer memory. It
fits conveniently into the unused space of the pre-
ceding Cholesky factorization. The existence of the
omitted zero portion of both the given matrix and its
inverse must be kept in mind for an understanding
of the algorithm.

b) In practice the entries of the inverse are of
course carried as decimal fractions.

¢) The entries in the inverse are completely
independent of all previous rows of the inverse as
well as of the corresponding columns of the given
triangular matrix. This indicates that the computa-
tion could equally well have started with the first
single-entry row of the inverse and proceeded
downward. It follows, therefore, that if a given
triangular matrix is augmented with an additional
row or rows, the portion of the inverse already



computed remains unaltered, which is not true for
other types of matrices.

d) An independent check on the computations, as
well as an alternative first computation, consists of
column-by-column multiplication of the two matrices
in the above arrangement. For example, the first
column vector of the inverse (1, —1/2, —1/12)
times (inner product) the 1st, 2d, and 3d column
vectors of the given matrix, i.e., (1, 0, 0), (2, 4, 0),
and (3, 5, 6) respectively, satisfy the conditions

( (1) (1) + (- 1/2) (0)+ (- 1/12) (0) = 1
1) (2) 4 (— 1/2) (4) -f (= 1/12) (0) =0
| (1) (3) +(-1/2) (5) + (-1/12) (6) =0

with similar results for the second and subsequent

Cn Cv Cu Ci,M

0 2 ,,, 6 Cci ocu1
CT=

0 0 0 Cu Cu+i

0 0 0 b 0 6

yn O 0 0 0 0

yu 722 0 0 0 0
C-1

yik yok yik 7i+l,fc

yin 72n che o yin yi+ln

column vectors of the inverse. This can be inter-
preted as the result of actually interchanging the
role of the two matrices, which is valid because of
the postulated reciprocity of the matrix inverse. A
summation check is superfluous because each row
is independent of the others. A little reflection will
show how the column by column multiplication can
be used to compute the inverse in the first place.

e) The same arrangement can be used to invert
a lower triangular matrix by writing it in its trans-
posed position. The inverse will then appear in its
proper form.

For computer programing it is necessary to have
a formula for the general term of the inverse of
an n-dimensional triangular matrix. This follows
directly from a consideration of the extension of (5)

C\k Cin

Cz,k-i C2k C Cm
Ci k-i Cik Cin

6 0 b Cnn

0 0 0 0

0 0 0 0

7lc-iJc 7Kk 0 0
yk—I n Tkn 7n

Generalizing equations (6), we have for i < k the condition

ykkCik+ yk-i, kCitk-im. .

from which

yHe —— ~Q"\(ykkCik+yk-itkCitk-\+,

where all the y’s on the right have been computed in
the preceding steps. This formula can be written as

I r=k-(i+1)
yik ~r<_]c yk-r,kQ\,k-r for i<k
i

or more concisely

r=k
~ yrkCir

r=i+1

yik a for i<k

In analogy with the first of equations (6) the first

y in the row is ykk—fm, while for i >k, yu—o.

491-890 OL - 73 - 2

.+ yt+i~Cij+i4- yikCn = 0

- yi+i KCi,i+i)

Having factored the matrix N into CCT and having
inverted C, it is a simple matter to obtain the in-
verse of N from (4).

The quantity on the right side of (4) results from
row on row multiplication of (Cr—: on itself, where
(CN-1 is by our convention the upper triangular
form. If the triangular matrix inverse presents itself
in the lower triangular form C-1, then N_1 is pro-
duced by column on column multiplication of C 1
on itself.

Since the solution to a set normal equation

Nx=S
x=N-'S

the vector x is found by multiplying A-1 with the
given vector /. This solution is no more complicated



or lengthy, as will be shown, than the conventional
back solution, and it contains error theoretical
information that only the inverse of N can provide.

3. IMPROVING THE PRECISION OF THE
INVERSE

From N= CCT it follows that
C~1IN(C~1)T=I. M

When the computations outlined above are executed
rigorously in floating decimal mode, the resulting
inverse will be optimal; and the indicated multipli-
cation in (7) will fail to exactly equal the unit matrix |
only to the extent that the computer carries too few
significant digits for the problem. If the given matrix
N is known to be positive definite and one or more
of the reduced diagonal terms in the Cholesky
factorization (1) reduce to an excessively small
number relative to the other diagonals, then the
corresponding diagonal term of the inverse V-1 will
be excessively large, indicating that the mean error
of the variable associated with this diagonal term is
so large that the determination of this particular
variable is meaningless from the standpoint of least
squares theory. Such a near-singularity in the V
matrix is a direct consequence of a poorly conceived
phase of the measuring process and can be cor-
rected only at the source.

Loss of precision can, however, be considerable
in hand computation or some other form involving a
fixed decimal point. In such a case the multiplica-
tion on the left side of (7) produces a matrix /* which
is symmetric but only approximately diagonal:

C-IN(C~)T=I* @®

~

The Cholesky factorization and the inverse can
now be improved to match the precision of floating
point computation, be extended to a larger number
of significant digits, or corrected for possible blun-
ders by the following procedure.

The matrix /* in (8) is well conditioned and can
be factored very precisely by the Cholesky algorithm
into /* = C* (C*)T so that (8) becomes

C~'N(C-)T=C*(C*)T 9)

Inverting C*, a process which is again capable

of high precision since C* is strongly diagonal,

.0021236338
1.0000481731

1.999910273

/> =

(9) becomes

[(C*)-1C-1IN[(C*)-1C~1]T=I (20)
where now, it will be found, the identity with the
unit matrix is good to the number of significant
digits used in computing C* and (C¥*)-1, less the
inevitable degradation caused by the variation in
magnitude of the reduced diagonal terms. The
guantity (C*)~1C-: inside the brackets in (10) is a
corrected value Cjl for C-1 and will satisfy the
condition (7) optimally. The corrected inverse of N
will beV-1= {Cj1) TCjl.

Example 3:
The matrix
730 432 621 405
432 1857 1928 560
N 621 1928 2055 685
405 560 685 742

factors by the Cholesky algorithm into CCT where

27.02 0 0
15.90 40.02 0
. 22.98 39.00 2.455
14.99 8.005 11.54 17.89/

This result is correct to four significant digits and
can be obtained by floating point computation,
carrying six digits throughout since the ratio of the
largest to the smallest reduced diagonal is 40.02/
2.455, roughly one magnitude. A small blunder is
included: the first entry of the second row should
read 15.99.
A rough inversion of C produces

/.03701 0 0 0
/—.01471 .02499 0 o
1—-.1128 -.3969 4073 o
\.04838 .2449 -.2628 05590

The multiplication C~:N(C~1)T produces the sym-
metric matrix /* of (7).

-.032254215 .020536849

.000362250 -.0005391296
1.00058520 -.000923670
1.000893582



The factorization 1* = C*(C*)T yields

/9999551355 0 0 0
C*= 0021237291 1.0000218312 0 0
-.0322556621 .0004307429 .9997722674 0

\ .0205377704 -.0005827335 -.0002610191 1.0002356594 J

The matrix 1* is so nearly a unit matrix that this factorization and the subsequent inversion of C* can be
computed precisely without the aid of floating decimal to whatever number of significant digits the computer
can handle. In this case we have used 10-digit accuracy.

The inversion routine gives

1.0000448665 0 0 0
(E*)-1= -.0021237780  .9999781693 0 0
.0322653720 -.0004308316 1.0002277845 0

-.0205266703  .0005824711 .0002610170 .9997643961

and the product (C*)-1C-1 gives the corrected inverse Cji

.03701166051 0 0 0

—.01478827989 .02498945445 0 0

on = 1116252151 -.3970011742 4073927766 0
.04757089854 .2447532589 -.2626317711 .05588682974,

from which the inverse of the given matrix N can be computed, correct to at least eight significant figures
in all the entries by performing the matrix multiplication N-1 = (Cj1) TCf 1, the result being

1.01631173527 05558892286 — 05796893565 .002658586707 \
.2181385629 —.2260153925 .01367848371
2349443216 — 01467765708
.003123337738

It is important to note that the matrix Cy: is not the precise inverse of the approximate matrix C from
the first Cholesky factorization of N. It is, rather, the inverse of the factor C which would have been obtained
in such a factorization if precision to a larger number of significant digits had been available. This factor can,
in fact, be obtained without such a more precise factorization by inverting the inverse C"1, i.e., by computing
(C/1)-1. For this numerical example the result of such an inversion yields

'27.01851217 0 0 0 \
15.98903733 40.01688000 0 0
22.98424117 38.99614637 2.45463361 0

14.98972250 8.00484118 11.53518233 17.89330339 /

This triangular matrix multiplied by its transpose reproduces the given matrix N to at least eight significant
figures in all the entries.



4, COMPARISON WITH THE BACK
SOLUTION

Gauss developed his algorithm for the solution of
linear equations from the standpoint of obtaining an
equivalent set of equations in each of which an addi-
tional variable has been eliminated. He also proved
that the algorithm operating on the coefficients of
the unknowns can be extended to the column of
constant terms to produce the corresponding set of
constants for the new equations. He could then solve
for the unknowns in order, starting with the last
equation which contains only one unknown, the
so-called back solution. This type of solution is still
being used to some extent. When the Cholesky
algorithm is viewed as a simple variation of the
Gauss-Doolittle algorithm, the analogous treatment
of the constant column follows directly without
further proof. However, with a development of this
algorithm from the standpoint of matrix algebra,
independent of Gauss, justification of the validity
of extending the reduction to the column of con-
stants is necessary and can be demonstrated as
follows:

Consider a set of, say, four homogeneous linear
equations, the matrix of whose coefficients N is
nonsingular, symmetric, and positive definite:

N\\X\ + Tl12%2 + 7%13%3 + 7%14+4 = 0

7112*1 + 7122*2 0" 7123*3 + 7*24+4 =0
7*13%1 4 7*23*2 + 7133*3 + 7I34*4 = O

TIH*1 + 7133*3 + 7134*3 + 7l144*4 = O

(11)

or Nx = 0. Factoring N we obtain the equivalent set
CCTx= 0 and, on multiplying both sides by C 1,

C*=0
which, written out in full, is

Cn*i + C12*2 + CisXs + C14*4=0

Ca2+2 d" C23*3 d" C24*4 == 0
¢ 2

c33x3 d- c3ax4 —0
b C44*4==0

where the C’s are derived in the Cholesky factoriza-
tion of N. The set of conditions (12) is completely
equivalent to (11). Furthermore, the first three
equations of (11) are equivalent to the first three of
(12). This follows because in producing the coeffi-
cients for the first three equations of (12) the last
row of the matrix N has not yet been considered,
and these three equations must therefore be inde-
pendent of the condition expressed by the fourth
equation (11). These two equivalent sets of three
equations each have four unknowns, and one
unknown is therefore a free parameter. Setting

8

Xa=1 in both sets of three equations we have the
equivalence of
7*11*1 + 7*12*2 + 7*13*3 + 7*14 = O

fr12%1 + 7122%2 + 7%23*3 + 7724 =0 (13)
7*13+1 (~ 7123*2 0" 7133*3 0" Tlsa == 0
and
Cu*id“Cl12¥2d" C13*3"1C14=0
i C22X2d“ C*23*3d" C24— 0 (14)

I CaX3d-C34=0

where (13) is typical of the nonhomogeneous, sym-
metric, linear, normal equations of least squares
theory and (14) the corresponding set of Cholesky-
reduced equations that can be solved with a back
solution. The extension of the above demonstration
from four to n equations involves no essential
difficulties. It is customary and convenient to
designate the coefficients in the last column of (13)
and (14), i.e., the constants in the equations, by
symbols different from the symbols for the coeffi-
cients of the unknowns * and occasionally to trans-
fer these constants to the other side of the equations.
Thus equations (14) can be written in the conven-
tional form

{C 11#1d" C12#2 0" C13*3 = /11

C22*2 d- £23*3 = ™2

£33*3 = ™3

or

Clx=S (15)

where CT is upper triangular, and the vector / has
components that are the negatives of the constant
terms in (14). Computing the inverse of (CT)_1 and
multiplying it into both sides of (15) gives the solution
for*:

*= (CT)~1/

By going through these computations it can be seen
that they involve the identical operations used in the
conventional back solution. Given that the inverse
can be improved, if necessary, as shown in section 3,
there is no doubt that this approach is at least as
good as the conventional type of back solution.
Furthermore, having computed (CT)~I it is merely
necessary to multiply this matrix by its transpose to
obtain the complete inverse N~t of N, which

a) solves the equations (13) directly, with the option
of refining the solution by improving the inverse, and

b) as a covariance matrix permits the statistical
interpretation of the solution and of subsequent com-
putations with these results.



5. APPLICATION TO INVERSION OF
NONSYMMETRIC MATRIX

Although the method of inversion described above
applies to the symmetric, positive definite matrices
associated with the normal equations of geodesy, it
can also be used to invert a nonsymmetric matrix
with real coefficients. To solve the equations

Ax=t (16)

where A is such a nonsymmetric matrix,premultiply
both sides of (16) by A T:

ATAX=ATT an

The product ATA is of the type which we have
designated by N and which can be factored into
CCT and inverted. Premultiplying (17) with V-1
found in this manner gives

X = N~ATF (18)

as the solution to (16) and shows that the inverse of
the matrix”, if it exists, is

A~' = N~IAT (19)

6. EQUIVALENCE OF THE SYMMETRIC SOLU-
TION WITH THE LEASTSQUARES POS-
TULATE

Since an inverse is defined only for square non-
singular matrices, the assumption is implicit in (16)
that this is a set of independent linear equations
with an equal number of unknowns x which has
therefore a unique solution.

The process of symmetrization used to form (17),
when applied to a nonsquare matrix”, leads to some
interesting and rather unexpected results.

Il A in (16) is not square, i.e., if there are more
equations than unknowns, or vice versa, then A
is not invertible, corresponding to the well-known
fact from linear algebra that no set of xIs or an
infinity of such sets will satisfy the equations. This
raises the question of what legitimate operation on
the equations (16) can produce a form with an in-
vertible matrix for the coefficients of x. The problem
is analogous to the purely formal device of introduc-
ing an integrating factor into a differential equation
or, more basically, of multiplying the algebraic
equation ax = b by the reciprocal of a.

Assuming A to have dimensions mXn, with

n . . .
m=>n, then r%y matrix algebra, if A is premul-

tiplied by a matrix having n rows all'm columns
the resulting product will be a square matrix which
is, with certain known exceptions, nonsingular and
hence invertible. The obvious choice for such an
“inversion factor” for the equations (16) is AT,
the transpose of A, since it introduces a minimum
of extraneous information into the problem— less

than, for example, an arbitrary matrix M with
dimensions nx m. Premultiplying the equation

A x= € (20)
mn nl  ml

on both sides by AT we obtain

nm
(AV) x = (ATP)
nn nl nl

with the unique solution
x=(ATA)-IATS (21)

obtained by purely formalistic considerations and
with a minimum of additional assumptions.

A. Observation Equations

In the calculus of observations of directly meas-
ured functions of linearized variables we are faced
with the identical problem of solving the so-called
observation equations or error equations, of the
form (20), linear in the unknowns or corrections to
unknowns X, whose number n is exceeded by the
number of equations (observations) to be satisfied.
The adjustment of triangulation by variation of
coordinates is an example of this type of computa-
tion. The interpretation of the individual quantities
aix—fi in each equation (20) to be a residual
Vi=aiX— /i for the measured function correspond-
ing to fixed and sufficiently close values of the
unknowns x in all these equations, together with the
condition that Si;2 be a minimum, also leads to the
solution (21). We can conclude, therefore, that the
purely formalistic considerations leading to (21)
are equivalent to the least squares hypothesis
which was in no way implicit in our assumptions.
This shows the least squares postulate to be an
irreducible hypothesis.

B. Condition Equations

Similar conclusions are reached in the alternative
and equivalent method of adjustment by indirect
observations or with so-called condition equations.
The typical set of equations to be solved in this type
of adjustment is

B v=/
nmml nl (22)

with m>n and again subject to the condition
Evz = minimum. Clearly the equations (22) by them-
selves are not sufficiently restrictive to yield an
unambiguous solution, since m — n independent
conditions could be added to the set (22) before a
solution for the t;’s becomes unique. Seeking the
simplest formalistic solution for this case without
postulating the least squares condition, we see that
premultiplication of (22) by BT will not work because
the product BTB with m > n will be necessarily



singular and not invertible. However, BBT will be
of dimension nX n and will possess an inverse
(BBT)~I if the conditions (22) are independent. It is
not difficult to see that the simplest way to introduce
BT as a factor after B is to make a legitimate
transformation of the variable v

v=DBT k
ml mn nl

resulting in the conditions
BBTk=S (23)
equivalent to (22) and having the unique solution

k={BBr)-1S
so that
v=BTk=BT{BBT)~1S

This, likewise, is the Gaussian least squares solution
for “condition” equations.

7. THE GAUSSIAN ALGORITHM FOR
SYMMETRIC MATRICES

Before the advent of electronic calculators and
computers the labor of root extraction prevented the
Cholesky factorization, with its advantages due to
symmetry, from displacing in practice the standard
Gauss-Doolittle solution for normal equations.
For comparison, we show the simple relation
between the two.

From the classical development of the Cholesky
algorithm from Gauss-Doolittle, it is known that
Gauss divides each reduced equation by the corre-
sponding diagonal term, thus making each divided
and reduced diagonal term equal to unity. Cholesky,
on the other hand, divides by the square root of
these diagonals. The matrix of coefficients of the
undivided reduced equations is in each case the
same upper triangular matrix with diagonal terms
¢?i, ¢?2, . . . dri- If the diagonal matrix whose entries
are these cPs is designated D, a corresponding
diagonal matrix consisting of entries Vdi, VS2,

.. Vdn can be designated D12 The relation

between the divided Gaussian upper triangular
matrix Gr, with diagonal terms each equal to 1, and
the corresponding Cholesky matrix CT can then be

I dri dngi2 dugi3

d\\gi2gl2 + C?23

dngl3gl3 + fl?22#23#23 + C?33

dilg\3g\2 + C?22#23

written as
CT = DI2GT (24)

because of the theorem that premultiplication with a
diagonal matrix multiplies all entries of a row of
the matrix being multiplied with the corresponding
entry of the diagonal matrix. From (24) follows
C = G(DIlI2)T = GD12 and

N = CCT = GDILDIL.GT = (GD)GT  (25)

This, together with (24), gives the Gaussian facto-
rization in terms of the Cholesky factors C and CT.

The Gaussian factorization algorithm can also be
established, independent of the Cholesky factoriza-
tion, by matrix algebra. Like the method of section 1
we postulate a given symmetric matrix N to be,
according to (25), the product GDGT, where G is the
lower triangular matrix

/* >\
0 0
=\
gl2 1 0
als 3 1 0
' 0
1 o/
Vv
\gin 1/
agz2n g3n

and D the diagonal matrix

and GT the transpose of G.
By actual multiplication the product N=GDGT is
found to be the symmetrical matrix

dugin

dug\n + da2.gun
duginglin d22g2ng2n~"~ ~33173n

(26)



Conversely, if a symmetric matrix N with ele-
ments riik is given we can find, by the algebraic
method of undetermined coefficients, the da and
gik in (26) in sequence, computing each row in turn.
This approach leads to the same sequence of opera-
tions and results specified by Gauss (1811a)* and
codified by Doolittle (U.S. Coast and Geodetic
Survey, 1881). Formulas analogous to (2) and (3) of
section 1 are somewhat more cumbersome than for
the Cholesky factorization and are not given here.

From (25) the inverse of N is

N~1= (GT)-1D-1G~1

a product which requires the inversion of a tri-
angular matrix G and the simple inverse of the diago-
nal matrix D.

8. THE GAUSSIAN ALGORITHM FOR NON-
SYMMETRIC MATRICES

The term “Gaussian elimination” is commonly
reserved for Gauss’s method of reducing a system
of linear equations with a nonsymmetric square
matrix of coefficients to triangular form. To establish
simply the procedure to be followed in this re-
duction, it is again convenient to consider the
product ABT of two triangular matrices A and BT
where A is the lower triangular matrix

BT

M1 g o + .+« o0 0
/ #21 ..
w2 © ° ..
#31 #32 gy . o ., . 0
@7)
#jl  aj2  dj3 coan . . 0
\dnl dn2 dn3 * * dnj * * dm
an upper triangular matrix
/= b1 613 ' bik bin
1623 . 62« ' b2n
0 (o} 1 , * b3k * ' Db3n
0 0 . 1 bkn
\o
(] 0 . 0 o 1

whose diagonal terms equal 1 in conformance with the Gauss equations. Together the matrices (27) contain
the necessary n. parameters to correspond with those of an arbitrary n x n matrix. Actual multiplication

of ABT yields the matrix M of (28).

M=ABT=
#n  #11612 #11613 + aubik #116m
d21 d2\b\2 + d22 #21613 + #22623 * H2I6IA: + #2262*: 1 #2|6m + #2262/1
#31 #31612+ #32 #31613 + #32623 + #33 * #3I6ifcH" #3262+ #3363"; + #3|6m+ #326271+ #3363/1
(28)
#il #j1612 + dj2  #jl6i3+ #2623+ #j3  #jl6ifc+ #j262fc+ dj~bsk + * * *  dj\b\n + #/262*1+. . . +#jj6jn
anl #wlBil + #n2  #n16i3+aw2623+#n3 * #wlbifc+ #11202~+#n363fc +. . .+#nfe #nlOmM+ #n262n++ + .+ #n

mik= #j1Bifc+ dj2 62*:+ djsb3k+ . . .

i=/
~2 ain'k where / =lesser of j, k

*This reference contains a printer’s error in a very essential formula which Gauss
corrected in an addendum (1811b). Bertrand (1855) copies the erroneous formulas,
which may explain why Doolittle was the only one in the geodetic community to follow
the elegant symmetric approach of the earlier Gauss work.
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This is the makeup of the given square matrix to be
factored into the triangular matrices A and BT.
The elements b of the BT matrix are developed in
the rows above the diagonal, and the a’s of A in
the columns on and below the diagonal. The ele-
ments should be recorded, as they are computed
(28), in their proper relative position as indicated
by the underlining. The computation sequence is
first column and row, second column and row begin-
ning with the diagonal term, etc.

A reduction with a 4 x 4 matrix should make clear
the necessary steps in the reduction which will be
found identical with the Gaussian elimination
process. In general, when the term mjk in the jth
row and Ath column, j 7™k, is being reduced, the
set of a’s, k—I in number, a/i, aj. ... dj, k-i will have
been computed and will occupy the spaces in the
same row and preceding mjk. Similarly, the column
extending above mjk will contain the j-l1 6’s: bik,
bak, . + + bj-i,k- The sum of the products of the first
(A—1) a’s, each multiplied with the corresponding
b from the column set, is subtracted from mjk
leaving the answer djk, since the last term in mjk
is djkbkk and bkk=1 by definition. For k >j, i.e.,
in the portion of the matrix above the diagonal, the
sum of j—1 such products is subtracted from mjk,
leaving ajjbjk from which follows bjk by division
with ajj, already computed. When the factorization
is complete, the matrix multiplication ABT should
equal the given matrix M for a check on the numeri-
cal work.

If the equations to be solved by this algorithm are

Mx =€ (29)

then considerations similar to those of section 4 will
show that extending the algorithm to the constant
column / will produce a vector /" satisfying a system

equivalent to (29) and in triangular form, ready for a
Gaussian back solution.

9. SQUARE ROOT FACTORIZATION

The Cholesky modification of the Gauss algorithm
for solving linear equations with a symmetric posi-
tive definite matrix can be readily generalized to
parallel the general case of Gaussian elimination of
section 8. The factorization with real numbers is
again possible if the given nonsymmetric matrix is
positive definite.

The assumed factors are

CcL21 d22
dsi dz2 d33
dj2 d
/ an d2 o3 fdlk ot
0 22 d23 ' d2k ¢
0 0 331 d3k
d\—
1 0 0 'Chkk*j

which differ, in essence, from (27) only in that

both matrices have identical diagonal entries.
BTx=S' (30) The product\A\ gives
/dudil a2 d\a\3 dudik \
[ aziau  gog\2 " d22d22  d2\d\3 “I" d22d23 ' d2ld\k + d22d2k \

d3zd\\  d3\d\2 H" d32d22

M=

dj\di2 + dj2d22

d3\d\3 + d32d23 + d33d33

dj\d\3 4" dj2d23 + dj3d33

12

' d3\d\k+ d32d2k+ d33d3k *
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The general entry in the given product matrix is

I=n

mjk = 2 ajiCLik 1QQ\
(where i~1, 2, . . . n, n being the lesser ofj, k)
as obtained by multiplying the jth row vector of A\
with the Aith column vector of A\. When the in-
dividual a’s are evaluated in the sequence used in
the Gaussian elimination of section 8, all the terms
except the last in the sum (33) representing mjk
will be known. For j > k, mjk ends with ajkakk, with
all a’s known except a,jk.

When all the ajk have been computed, the two
triangular matrices of (31) will be known and can be
inverted individually. From the assumption M=
A\A\ follows

(34)

and the solution of a system of equations Mx=F
is X— The inverse (34), when computing
with fixed decimal point, can be made more pre-
cise by a method analogous to that of section 3.
In general the relation A~1M(Ab—1=1 will not be
satisfied numerically exactly, but will produce a
result

Ar=M(Afl-' =I* (35)
where /* has nonsymmetric small off-diagonal
terms. It is of the same type as M but much more
diagonal and can therefore be factored very pre-
cisely by the same algorithm used for factoring
(32) into I*=A*(A%)T. Inverting these two triangular
matrices and introducing the result in (35) produces
a near identity

(ADY)~""M{AD-A™)T)-"I1
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or, designating the products as Afl

and (AD-'"((Az>m-1 as (ADTL,
AM(A%)-"'=I

These improved values of Afl and {Al)~x substi-
tuted in the right-hand side of (34) result in the
improved inverse of M.

This method of factorization and inversion has the
same advantages over the classical Gaussian elimin-
ation of section 8 that the original Cholesky method
has over the Gauss-Doolittle solution for symmetric
matrices. On the whole, however, the method of
symmetrization described in section 5 seems prefer-
able to either of these two in terms of simplicity,
generality, and economy of computation.
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