Soil Carbon Dynamics in Soybean Cropland and Forests in Mato Grosso, Brazil
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Add terms to the query box

Query box

Help
Clear All
i

Soil Carbon Dynamics in Soybean Cropland and Forests in Mato Grosso, Brazil

Filetype[PDF-1.41 MB]



Details:

  • Journal Title:
    Journal of Geophysical Research: Biogeosciences
  • Description:
    Climate and land use models predict that tropical deforestation and conversion to cropland will produce a large flux of soil carbon (C) to the atmosphere from accelerated decomposition of soil organic matter (SOM). However, the C flux from the deep tropical soils on which most intensive crop agriculture is now expanding remains poorly constrained. To quantify the effect of intensive agriculture on tropical soil C, we compared C stocks, radiocarbon, and stable C isotopes to 2 m depth from forests and soybean cropland created from former pasture in Mato Grosso, Brazil. We hypothesized that soil disturbance, higher soil temperatures (+2°C), and lower OM inputs from soybeans would increase soil C turnover and deplete C stocks relative to nearby forest soils. However, we found reduced C concentrations and stocks only in surface soils (0–10 cm) of soybean cropland compared with forests, and these differences could be explained by soil mixing during plowing. The amount and Δ14C of respired CO2 to 50 cm depth were significantly lower from soybean soils, yet CO2 production at 2 m deep was low in both forest and soybean soils. Mean surface soil δ13C decreased by 0.5‰ between 2009 and 2013 in soybean cropland, suggesting low OM inputs from soybeans. Together these findings suggest the following: (1) soil C is relatively resistant to changes in land use and (2) conversion to cropland caused a small, measurable reduction in the fast‐cycling C pool through reduced OM inputs, mobilization of older C from soil mixing, and/or destabilization of SOM in surface soils.
  • Source:
    JGR Biogeosciences 123(1):18-31, 2018
  • Document Type:
  • Place as Subject:
  • Rights Information:
    CC BY-NC-ND
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

Related Documents

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.18